全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

遮挡条件下的人脸年龄估计研究
Research on Facial Age Estimation under Occlusion Conditions

DOI: 10.12677/csa.2025.151026, PP. 256-268

Keywords: 面部年龄估计,Transformers,知识蒸馏,遮挡处理,特征重建
Facial Age Estimation
, Transformers, Knowledge Distillation, Occlusion Handling, Feature Reconstruction

Full-Text   Cite this paper   Add to My Lib

Abstract:

在日常生活中,口罩遮挡口部和鼻部、眼镜遮挡眼睛等情况对基于人脸的年龄估计模型造成了较大的挑战。为应对这一问题,本文设计了一种基于知识蒸馏的自监督特征重建模型。由于缺少包含年龄标记的遮挡人脸数据集,我们选择在无遮挡的原始人脸图像数据集上合成口罩和眼镜作为遮挡数据集,并通过自监督学习的方式实现特征重建。在方法中,我们使用主流的年龄估计模型作为教师模型,训练一个结构相同但附加了特征重建模块的学生模型。通过知识蒸馏,将教师模型的知识迁移至学生模型,并利用特征重建模块对遮挡区域进行特征补全,以提升模型对遮挡人脸图像的年龄估计效果。实验结果表明,提出的方法显著提升了模型在遮挡图像上的年龄估计性能。特征重建模块有效缓解了常见遮挡对年龄估计的负面影响,从而增强了模型的实用性和鲁棒性。
In daily life, situations where masks cover the mouth and nose, and glasses cover the eyes, pose significant challenges to facial based age estimation models. To improve the robustness of the facial age estimation model under occlusion, this paper proposes a self-supervised feature reconstruction model based on knowledge distillation. Due to the lack of age labeled occluded face datasets, we chose to synthesize masks and glasses as occluded datasets on the original unobstructed face image dataset, and achieved feature reconstruction through self-supervised learning. In the method, we use mainstream age estimation models as teacher models and train a student model with the same structure but additional feature reconstruction modules. By knowledge distillation, the knowledge of the teacher model is transferred to the student model, and the feature reconstruction module is used to complete the features of the occluded area, in order to improve the age estimation effect of the model on occluded face images. The experimental results show that the proposed method significantly improves the age estimation performance of the model on occluded images. The feature reconstruction module effectively alleviates the negative impact of common occlusion on age estimation, thereby enhancing the practicality and robustness of the model.

References

[1]  Zhao, Q., Dong, J., Yu, H. and Chen, S. (2021) Distilling Ordinal Relation and Dark Knowledge for Facial Age Estimation. IEEE Transactions on Neural Networks and Learning Systems, 32, 3108-3121.
https://doi.org/10.1109/tnnls.2020.3009523
[2]  Rothe, R., Timofte, R. and Gool, L.V. (2015) DEX: Deep EXpectation of Apparent Age from a Single Image. 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, 7-13 December 2015, 252-257.
https://doi.org/10.1109/iccvw.2015.41
[3]  Zhang, K., Liu, N., Yuan, X., Guo, X., Gao, C., Zhao, Z., et al. (2020) Fine-Grained Age Estimation in the Wild with Attention LSTM Networks. IEEE Transactions on Circuits and Systems for Video Technology, 30, 3140-3152.
https://doi.org/10.1109/tcsvt.2019.2936410
[4]  Li, W., Lu, J., Feng, J., Xu, C., Zhou, J. and Tian, Q. (2019) Bridgenet: A Continuity-Aware Probabilistic Network for Age Estimation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 15-20 June 2019, 1145-1154.
https://doi.org/10.1109/cvpr.2019.00124
[5]  Niu, Z., Zhou, M., Wang, L., Gao, X. and Hua, G. (2016) Ordinal Regression with Multiple Output CNN for Age Estimation. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 4920-4928.
https://doi.org/10.1109/cvpr.2016.532
[6]  Chen, S., Zhang, C., Dong, M., Le, J. and Rao, M. (2017) Using Ranking-CNN for Age Estimation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 742-751.
https://doi.org/10.1109/cvpr.2017.86
[7]  Pan, H., Han, H., Shan, S. and Chen, X. (2018) Mean-variance Loss for Deep Age Estimation from a Face. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 5285-5294.
https://doi.org/10.1109/cvpr.2018.00554
[8]  Wen, X., Li, B., Guo, H., Liu, Z., Hu, G., Tang, M., et al. (2020) Adaptive Variance Based Label Distribution Learning for Facial Age Estimation. Computer VisionECCV 2020, Glasgow, 23-28 August 2020, 379-395.
https://doi.org/10.1007/978-3-030-58592-1_23
[9]  Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B. and Yuille, A. (2018) Deep Regression Forests for Age Estimation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 2304-2313.
https://doi.org/10.1109/cvpr.2018.00245
[10]  Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B. and Yuille, A. (2019) Deep Differentiable Random Forests for Age Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 404-419.
https://doi.org/10.1109/TPAMI.2019.2937294
[11]  Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T. and Efros, A.A. (2016) Context Encoders: Feature Learning by Inpainting. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 2536-2544.
https://doi.org/10.1109/cvpr.2016.278
[12]  Li, Y., Liu, S., Yang, J. and Yang, M. (2017) Generative Face Completion. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 5892-5900.
https://doi.org/10.1109/cvpr.2017.624
[13]  Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X. and Huang, T.S. (2018) Generative Image Inpainting with Contextual Attention. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 5505-5514.
https://doi.org/10.1109/cvpr.2018.00577
[14]  Liu, G., Reda, F.A., Shih, K.J., Wang, T., Tao, A. and Catanzaro, B. (2018) Image Inpainting for Irregular Holes Using Partial Convolutions. IComputer VisionECCV 2018, Munich, 8-14 September 2018, 89-105.
https://doi.org/10.1007/978-3-030-01252-6_6
[15]  Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X. and Huang, T. (2019) Free-form Image Inpainting with Gated Convolution. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 4470-4479.
https://doi.org/10.1109/iccv.2019.00457
[16]  Zhang, H., et al. (2018) Self-Attention Generative Adversarial Networks. Proceedings of the 36th International Conference on Machine Learning, Long Beach, 9-15 June 2019, 7354-7363.
[17]  Yang, Y. and Guo, X. (2020) Generative Landmark Guided Face Inpainting. Pattern Recognition and Computer Vision, Nanjing, 16-18 October 2020, 14-26.
https://doi.org/10.1007/978-3-030-60633-6_2
[18]  Dong, J., Zhang, L., Zhang, H. and Liu, W. (2020) Occlusion-Aware GAN for Face De-Occlusion in the Wild. 2020 IEEE International Conference on Multimedia and Expo (ICME), London, 6-10 July 2020, 1-6.
https://doi.org/10.1109/icme46284.2020.9102788

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133