全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

运动干预帕金森病患者认知障碍的系统综述
A Systematic Review of Exercise Interventions for Cognitive Impairment in Patients with Parkinson’s Disease

DOI: 10.12677/ap.2025.151034, PP. 275-287

Keywords: 帕金森病,认知障碍,运动干预,生物学机制
Parkinson’s Disease
, Cognitive Impairment, Exercise Intervention, Biological Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

背景:帕金森病(Parkinson’s Disease, PD)是继阿尔茨海默病之后第二大神经退行性疾病。随着我国社会老龄化的加剧,帕金森病患者数量激增。认知障碍等非运动症状是帕金森病患者日常生活的主要影响因素,而临床上常规治疗帕金森病的方式对认知障碍几乎无效,其生物学相关机制也尚不明确。目的:总结归纳运动了干预对帕金森病患者认知障碍的作用以及潜在的生物学机制。方法:遵循系统综述和荟萃分析指南(Preferred Reporting Items for Systematic Reviews and Meta-Analysis, PRISMA),共纳入42篇文献。结果:这些研究是根据整体认知和特定认知域(执行功能、工作记忆、语言、记忆和视觉空间功能)进行分类的。并且,运动干预帕金森患者认知的生物学机制非常复杂。在分子水平上,有氧运动可增加血清神经营养因子水平、促进AMPA型谷氨酸受体表达和多巴胺分泌。在细胞水平上,对多巴胺能神经元有保护作用。在组织水平上,可增大海马体积和增强功能连接。结论:持续数月的有氧运动训练对帕金森病患者的认知有有益,但确切的生物学机制尚不清楚。未来的研究应探索帕金森病患者的个性化运动方案。
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disease following Alzheimer’s disease. As the population aging increases, the number of patients with PD is growing rapidly. Cognitive impairment and other non-motor symptoms have become a main factor in decline of quality of life in patients with PD. However, the current clinical treatments for PD have poor effectiveness on cognitive impairment, and the underlying biological mechanism is still unclear. Objectives: This study conducts a systematic review of the effects of exercise intervention on cognitive impairment in PD, and potential biological mechanism. Methods: Adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, a total of forty-two studies were included. Results: These studies were classified based on whether they evaluated global cognition or specific cognitive domains such as executive functions, working memory, language, memory, and visuospatial function. Moreover, molecular, cellular, and systemic changes occur under the effect of exercise. At the molecular level, aerobic exercise is found to increase the serum level of neurotrophic factors, the expression of AMPA-type glutamate receptor, and the secretion of dopamine. At the cellular level, it offers a protective effect on dopaminergic neurons. At the systemic level, it is associated with enhanced hippocampus volume and functional connectivity. Conclusion: Several-month aerobic exercise training has benefit effect on cognition in patients with PD. The precise biological mechanisms remain undefined. Future studies should explore the personalized exercise regimens tailored to the needs of PD patients.

References

[1]  姜宁, 曹玮, 宋超, 郭晶晶, 刘洪涛, 张勇(2012). 早期运动训练对帕金森小鼠中脑和纹状体的影响: 自噬与线粒体动力学关系的研究. 中国运动医学杂志, (2), 134-139.
[2]  薛宏斌, 张勇, 刘洪涛, 马强(2007). 早期运动训练通过增强小鼠脑线粒体呼吸功能预防MPTP神经毒性作用. 中国运动医学杂志, (4), 402-406.
[3]  张丽娟, 邵海涛, 王跃秀, 王晓民(2014). 帕金森病研究进展. 生命科学, (6), 560-570.
[4]  Alomar, S., King, N. K. K., Tam, J., Bari, A. A., Hamani, C., & Lozano, A. M. (2017). Speech and Language Adverse Effects after Thalamotomy and Deep Brain Stimulation in Patients with Movement Disorders: A Meta-Analysis. Movement Disorders, 32, 53-63.
https://doi.org/10.1002/mds.26924
[5]  Altmann, L. J. P., Stegemöller, E., Hazamy, A. A., Wilson, J. P., Bowers, D., Okun, M. S. et al. (2016). Aerobic Exercise Improves Mood, Cognition, and Language Function in Parkinson’s Disease: Results of a Controlled Study. Journal of the International Neuropsychological Society, 22, 878-889.
https://doi.org/10.1017/s135561771600076x
[6]  Baddeley, A. (2012). Working Memory: Theories, Models, and Controversies. Annual Review of Psychology, 63, 1-29.
https://doi.org/10.1146/annurev-psych-120710-100422
[7]  Brown, R. G., & Marsden, C. D. (1986). Visuospatial Function in Parkinson’s Disease. Brain, 109, 987-1002.
https://doi.org/10.1093/brain/109.5.987
[8]  Calabresi, P., Castrioto, A., Di Filippo, M., & Picconi, B. (2013). New Experimental and Clinical Links between the Hippocampus and the Dopaminergic System in Parkinson’s Disease. The Lancet Neurology, 12, 811-821.
https://doi.org/10.1016/s1474-4422(13)70118-2
[9]  Chang, H., Lu, C., Chiou, W., Chen, C., Weng, Y., & Chang, Y. (2018). An 8-Week Low-Intensity Progressive Cycling Training Improves Motor Functions in Patients with Early-Stage Parkinson’s Disease. Journal of Clinical Neurology, 14, 225-233.
https://doi.org/10.3988/jcn.2018.14.2.225
[10]  Chodzko-Zajko, W. J., & Moore, K. A. (1994). Physical Fitness and Cognitive Functioning in Aging. Exercise and Sport Sciences Reviews, 22, 195-220.
https://doi.org/10.1249/00003677-199401000-00009
[11]  Cruise, K. E., Bucks, R. S., Loftus, A. M., Newton, R. U., Pegoraro, R., & Thomas, M. G. (2011). Exercise and Parkinson’s: Benefits for Cognition and Quality of Life. Acta Neurologica Scandinavica, 123, 13-19.
https://doi.org/10.1111/j.1600-0404.2010.01338.x
[12]  Dadgar, H., Khatoonabadi, A. R., & Bakhtiyari, J. (2013). Verbal Fluency Performance in Patients with Non-Demented Parkinson’s Disease. Iranian Journal of Psychiatry, 8, 55-58.
[13]  Daniels, C., Krack, P., Volkmann, J., Pinsker, M. O., Krause, M., Tronnier, V. et al. (2010). Risk Factors for Executive Dysfunction after Subthalamic Nucleus Stimulation in Parkinson’s Disease. Movement Disorders, 25, 1583-1589.
https://doi.org/10.1002/mds.23078
[14]  de la Riva, P., Smith, K., Xie, S. X., & Weintraub, D. (2014). Course of Psychiatric Symptoms and Global Cognition in Early Parkinson Disease. Neurology, 83, 1096-1103.
https://doi.org/10.1212/wnl.0000000000000801
[15]  Duchesne, C., Gheysen, F., Bore, A., Albouy, G., Nadeau, A., Robillard, M. E. et al. (2016). Influence of Aerobic Exercise Training on the Neural Correlates of Motor Learning in Parkinson's Disease Individuals. NeuroImage: Clinical, 12, 559-569.
https://doi.org/10.1016/j.nicl.2016.09.011
[16]  Duchesne, C., Lungu, O., Nadeau, A., Robillard, M. E., Boré, A., Bobeuf, F. et al. (2015). Enhancing Both Motor and Cognitive Functioning in Parkinson’s Disease: Aerobic Exercise as a Rehabilitative Intervention. Brain and Cognition, 99, 68-77.
https://doi.org/10.1016/j.bandc.2015.07.005
[17]  Emre, M., Aarsland, D., Brown, R., Burn, D. J., Duyckaerts, C., Mizuno, Y. et al. (2007). Clinical Diagnostic Criteria for Dementia Associated with Parkinson’s Disease. Movement Disorders, 22, 1689-1707.
https://doi.org/10.1002/mds.21507
[18]  Fiorelli, C. M., Ciolac, E. G., Simieli, L., Silva, F. A., Fernandes, B., Christofoletti, G. et al. (2019). Differential Acute Effect of High-Intensity Interval or Continuous Moderate Exercise on Cognition in Individuals with Parkinson’s Disease. Journal of Physical Activity and Health, 16, 157-164.
https://doi.org/10.1123/jpah.2018-0189
[19]  Fisher, B. E., Li, Q., Nacca, A., Salem, G. J., Song, J., Yip, J. et al. (2013). Treadmill Exercise Elevates Striatal Dopamine D2 Receptor Binding Potential in Patients with Early Parkinson’s Disease. NeuroReport, 24, 509-514.
https://doi.org/10.1097/wnr.0b013e328361dc13
[20]  Fisher, B. E., Petzinger, G. M., Nixon, K., Hogg, E., Bremmer, S., Meshul, C. K. et al. (2004). Exercise-Induced Behavioral Recovery and Neuroplasticity in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Mouse Basal Ganglia. Journal of Neuroscience Research, 77, 378-390.
https://doi.org/10.1002/jnr.20162
[21]  Foltynie, T., Brayne, C. E. G., Robbins, T. W., & Barker, R. A. (2004). The Cognitive Ability of an Incident Cohort of Parkinson’s Patients in the UK. The Campaign Study. Brain, 127, 550-560.
https://doi.org/10.1093/brain/awh067
[22]  Frazzitta, G., Maestri, R., Ghilardi, M. F., Riboldazzi, G., Perini, M., Bertotti, G. et al. (2014). Intensive Rehabilitation Increases BDNF Serum Levels in Parkinsonian Patients. Neurorehabilitation and Neural Repair, 28, 163-168.
https://doi.org/10.1177/1545968313508474
[23]  Garcia, P. C., Real, C. C., & Britto, L. R. (2017). The Impact of Short and Long-Term Exercise on the Expression of Arc and Ampars during Evolution of the 6-Hydroxy-Dopamine Animal Model of Parkinson’s Disease. Journal of Molecular Neuroscience, 61, 542-552.
https://doi.org/10.1007/s12031-017-0896-y
[24]  Goldman, J. G., & Weintraub, D. (2015). Advances in the Treatment of Cognitive Impairment Inparkinson’s Disease. Movement Disorders, 30, 1471-1489.
https://doi.org/10.1002/mds.26352
[25]  Halon-Golabek, M., Borkowska, A., Herman-Antosiewicz, A., & Antosiewicz, J. (2019). Iron Metabolism of the Skeletal Muscle and Neurodegeneration. Frontiers in Neuroscience, 13, Article 165.
https://doi.org/10.3389/fnins.2019.00165
[26]  Hely, M. A., Reid, W. G. J., Adena, M. A., Halliday, G. M., & Morris, J. G. L. (2008). The Sydney Multicenter Study of Parkinson’s Disease: The Inevitability of Dementia at 20 Years. Movement Disorders, 23, 837-844.
https://doi.org/10.1002/mds.21956
[27]  Henley, J. M., & Wilkinson, K. A. (2013). AMPA Receptor Trafficking and the Mechanisms Underlying Synaptic Plasticity and Cognitive Aging. Dialogues in Clinical Neuroscience, 15, 11-27.
https://doi.org/10.31887/dcns.2013.15.1/jhenley
[28]  Hyman, C., Hofer, M., Barde, Y., Juhasz, M., Yancopoulos, G. D., Squinto, S. P. et al. (1991). BDNF Is a Neurotrophic Factor for Dopaminergic Neurons of the Substantia Nigra. Nature, 350, 230-232.
https://doi.org/10.1038/350230a0
[29]  Jokinen, P., Brück, A., Aalto, S., Forsback, S., Parkkola, R., & Rinne, J. O. (2009). Impaired Cognitive Performance in Parkinson’s Disease Is Related to Caudate Dopaminergic Hypofunction and Hippocampal Atrophy. Parkinsonism & Related Disorders, 15, 88-93.
https://doi.org/10.1016/j.parkreldis.2008.03.005
[30]  Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and Clinical Heterogeneity of Cognitive Impairment and Dementia in Patients with Parkinson’s Disease. The Lancet Neurology, 9, 1200-1213.
https://doi.org/10.1016/s1474-4422(10)70212-x
[31]  Kudlicka, A., Clare, L., & Hindle, J. V. (2011). Executive Functions in Parkinson's Disease: Systematic Review and Meta-Analysis. Movement Disorders, 26, 2305-2315.
https://doi.org/10.1002/mds.23868
[32]  Levin, B. E., Llabre, M. M., Reisman, S., Weiner, W. J., Sanchez-Ramos, J., Singer, C. et al. (1991). Visuospatial Impairment in Parkinson’s Disease. Neurology, 41, 365-365.
https://doi.org/10.1212/wnl.41.3.365
[33]  Lewis, F. M., Lapointe, L. L., Murdoch, B. E., & Chenery, H. J. (1998). Language Impairment in Parkinson’s Disease. Aphasiology, 12, 193-206.
https://doi.org/10.1080/02687039808249446
[34]  Li, F., Harmer, P., Fitzgerald, K., Eckstrom, E., Stock, R., Galver, J. et al. (2012). Tai Chi and Postural Stability in Patients with Parkinson’s Disease. New England Journal of Medicine, 366, 511-519.
https://doi.org/10.1056/nejmoa1107911
[35]  Lin, L. H., Doherty, D. H., Lile, J. D., Bektesh, S., & Collins, F. (1993). GDNF: A Glial Cell Line-Derived Neurotrophic Factor for Midbrain Dopaminergic Neurons. Science, 260, 1130-1132.
https://doi.org/10.1126/science.8493557
[36]  Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C. et al. (2012). Diagnostic Criteria for Mild Cognitive Impairment in Parkinson’s Disease: movement Disorder Society Task Force Guidelines. Movement Disorders, 27, 349-356.
https://doi.org/10.1002/mds.24893
[37]  Lynch, G. (2004). AMPA Receptor Modulators as Cognitive Enhancers. Current Opinion in Pharmacology, 4, 4-11.
https://doi.org/10.1016/j.coph.2003.09.009
[38]  Ma, S., Zhang, Y., Liu, N., Xiao, W., Li, S., Zhang, G. et al. (2019). Altered Transposition Asymmetry in Serial Ordering in Early Parkinson’s Disease. Parkinsonism & Related Disorders, 62, 62-67.
https://doi.org/10.1016/j.parkreldis.2019.01.028
[39]  Marusiak, J., Żeligowska, E., Mencel, J., Kisiel-Sajewicz, K., Majerczak, J., Zoladz, J. et al. (2015). Interval Training-Induced Alleviation of Rigidity and Hypertonia in Patients with Parkinson’s Disease Is Accompanied by Increased Basal Serum Brain-Derived Neurotrophic Factor. Journal of Rehabilitation Medicine, 47, 372-375.
https://doi.org/10.2340/16501977-1931
[40]  Mastroberardino, P. G., Hoffman, E. K., Horowitz, M. P., Betarbet, R., Taylor, G., Cheng, D. et al. (2009). A Novel Transferrin/TfR2-Mediated Mitochondrial Iron Transport System Is Disrupted in Parkinson’s Disease. Neurobiology of Disease, 34, 417-431.
https://doi.org/10.1016/j.nbd.2009.02.009
[41]  McKee, K. E., & Hackney, M. E. (2013). The Effects of Adapted Tango on Spatial Cognition and Disease Severity in Parkinson’s Disease. Journal of Motor Behavior, 45, 519-529.
https://doi.org/10.1080/00222895.2013.834288
[42]  Mirelman, A., Maidan, I., Herman, T., Deutsch, J. E., Giladi, N., & Hausdorff, J. M. (2011). Virtual Reality for Gait Training: Can It Induce Motor Learning to Enhance Complex Walking and Reduce Fall Risk in Patients with Parkinson’s Disease? The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66, 234-240.
https://doi.org/10.1093/gerona/glq201
[43]  Molteni, R., Wu, A., Vaynman, S., Ying, Z., Barnard, R. J., & Gómez-Pinilla, F. (2004). Exercise Reverses the Harmful Effects of Consumption of a High-Fat Diet on Synaptic and Behavioral Plasticity Associated to the Action of Brain-Derived Neurotrophic Factor. Neuroscience, 123, 429-440.
https://doi.org/10.1016/j.neuroscience.2003.09.020
[44]  Murray, D. K., Sacheli, M. A., Eng, J. J., & Stoessl, A. J. (2014). The Effects of Exercise on Cognition in Parkinson’s Disease: A Systematic Review. Translational Neurodegeneration, 3, 1-13.
https://doi.org/10.1186/2047-9158-3-5
[45]  Nelson, M. E., Rejeski, W. J., Blair, S. N., Duncan, P. W., Judge, J. O., King, A. C. et al. (2007). Physical Activity and Public Health in Older Adults. Medicine & Science in Sports & Exercise, 39, 1435-1445.
https://doi.org/10.1249/mss.0b013e3180616aa2
[46]  Nocera, J. R., Altmann, L. J. P., Sapienza, C., Okun, M. S., & Hass, C. J. (2010). Can Exercise Improve Language and Cognition in Parkinson’s Disease? A Case Report. Neurocase, 16, 301-306.
https://doi.org/10.1080/13554790903559663
[47]  Nocera, J. R., Amano, S., Vallabhajosula, S., & Hass, C. J. (2013). Tai Chi Exercise to Improve Non-Motor Symptoms of Parkinson’s Disease. Journal of Yoga & Physical Therapy, 3, Article No. 10.
[48]  Olde Dubbelink, K. T. E., Schoonheim, M. M., Deijen, J. B., Twisk, J. W. R., Barkhof, F., & Berendse, H. W. (2014). Functional Connectivity and Cognitive Decline over 3 Years in Parkinson Disease. Neurology, 83, 2046-2053.
https://doi.org/10.1212/wnl.0000000000001020
[49]  Owen, A. M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., Quinn, N. P. Et al. (1992). Fronto-Striatal Cognitive Deficits at Different Stages of Parkinson’s Disease. Brain, 115, 1727-1751.
https://doi.org/10.1093/brain/115.6.1727
[50]  Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D. et al. (2021). The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. British Medical Journal, 372, n71.
https://doi.org/10.1136/bmj.n71
[51]  Petzinger, G. M., Holschneider, D. P., Fisher, B. E., McEwen, S., Kintz, N., Halliday, M. et al. (2015). The Effects of Exercise on Dopamine Neurotransmission in Parkinson’s Disease: Targeting Neuroplasticity to Modulate Basal Ganglia Circuitry. Brain Plasticity, 1, 29-39.
https://doi.org/10.3233/bpl-150021
[52]  Petzinger, G. M., Walsh, J. P., Akopian, G., Hogg, E., Abernathy, A., Arevalo, P. et al. (2007). Effects of Treadmill Exercise on Dopaminergic Transmission in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Mouse Model of Basal Ganglia Injury. The Journal of Neuroscience, 27, 5291-5300.
https://doi.org/10.1523/jneurosci.1069-07.2007
[53]  Picelli, A., Varalta, V., Melotti, C., Zatezalo, V., Fonte, C., Amato, S., & Smania, N. (2016). Effects of Treadmill Training on Cognitive and Motor Features of Patients with Mild to Moderate Parkinson’s Disease: A Pilot, Single-Blind, Randomized Controlled Trial. Functional Neurology, 31, 25-31.
[54]  Pigott, K., Rick, J., Xie, S. X., Hurtig, H., Chen-Plotkin, A., Duda, J. E. et al. (2015). Longitudinal Study of Normal Cognition in Parkinson Disease. Neurology, 85, 1276-1282.
https://doi.org/10.1212/wnl.0000000000002001
[55]  Pompeu, J. E., Mendes, F. A. d. S., Silva, K. G. d., Lobo, A. M., Oliveira, T. d. P., Zomignani, A. P. et al. (2012). Effect of Nintendo WII-Based Motor and Cognitive Training on Activities of Daily Living in Patients with Parkinson’s Disease: A Randomised Clinical Trial. Physiotherapy, 98, 196-204.
https://doi.org/10.1016/j.physio.2012.06.004
[56]  Postuma, R. B., Aarsland, D., Barone, P., Burn, D. J., Hawkes, C. H., Oertel, W. et al. (2012). Identifying Prodromal Parkinson’s Disease: Pre-Motor Disorders in Parkinson’s Disease. Movement Disorders, 27, 617-626.
https://doi.org/10.1002/mds.24996
[57]  Poulton, N. P., & Muir, G. D. (2005). Treadmill Training Ameliorates Dopamine Loss but Not Behavioral Deficits in Hemi-Parkinsonian Rats. Experimental Neurology, 193, 181-197.
https://doi.org/10.1016/j.expneurol.2004.12.006
[58]  Radák, Z., Kaneko, T., Tahara, S., Nakamoto, H., Pucsok, J., Sasvári, M. et al. (2001). Regular Exercise Improves Cognitive Function and Decreases Oxidative Damage in Rat Brain. Neurochemistry International, 38, 17-23.
https://doi.org/10.1016/s0197-0186(00)00063-2
[59]  Ramel, A., Wagner, K., & Elmadfa, I. (2004). Correlations between Plasma Noradrenaline Concentrations, Antioxidants, and Neutrophil Counts after Submaximal Resistance Exercise in Men. British Journal of Sports Medicine, 38, e22.
https://doi.org/10.1136/bjsm.2003.007666
[60]  Reuter, I., Mehnert, S., Sammer, G., Oechsner, M., & Engelhardt, M. (2012). Efficacy of a Multimodal Cognitive Rehabilitation Including Psychomotor and Endurance Training in Parkinson’s Disease. Journal of Aging Research, 2012, 1-15.
https://doi.org/10.1155/2012/235765
[61]  Ridgel, A. L., Kim, C., Fickes, E. J., Muller, M. D., & Alberts, J. L. (2011). Changes in Executive Function after Acute Bouts of Passive Cycling in Parkinson’s Disease. Journal of Aging and Physical Activity, 19, 87-98.
https://doi.org/10.1123/japa.19.2.87
[62]  Ross, R., Blair, S. N., Arena, R., Church, T. S., Després, J., Franklin, B. A. et al. (2016). Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation, 134, e653-e699.
https://doi.org/10.1161/cir.0000000000000461
[63]  Schaeffer, E., Roeben, B., Granert, O., Hanert, A., Liepelt-Scarfone, I., Leks, E. et al. (2022). Effects of Exergaming on Hippocampal Volume and Brain-Derived Neurotrophic Factor Levels in Parkinson’s Disease. European Journal of Neurology, 29, 441-449.
https://doi.org/10.1111/ene.15165
[64]  Shah, C., Beall, E. B., Frankemolle, A. M. M., Penko, A., Phillips, M. D., Lowe, M. J. et al. (2016). Exercise Therapy for Parkinson’s Disease: Pedaling Rate Is Related to Changes in Motor Connectivity. Brain Connectivity, 6, 25-36.
https://doi.org/10.1089/brain.2014.0328
[65]  Shin, M., Kim, T., Lee, J., Sung, Y., & Lim, B. (2017). Treadmill Exercise Alleviates Depressive Symptoms in Rotenone-Induced Parkinson Disease Rats. Journal of Exercise Rehabilitation, 13, 124-129.
https://doi.org/10.12965/jer.1734966.483
[66]  Silva-Batista, C., Corcos, D. M., Roschel, H., Kanegusuku, H., Gobbi, L. T. B., Piemonte, M. E. P. et al. (2016). Resistance Training with Instability for Patients with Parkinson’s Disease. Medicine & Science in Sports & Exercise, 48, 1678-1687.
https://doi.org/10.1249/mss.0000000000000945
[67]  Silveira, C. R. A., Roy, E. A., Intzandt, B. N., & Almeida, Q. J. (2018). Aerobic Exercise Is More Effective than Goal-Based Exercise for the Treatment of Cognition in Parkinson’s Disease. Brain and Cognition, 122, 1-8.
https://doi.org/10.1016/j.bandc.2018.01.002
[68]  Sinforiani, E., Banchieri, L., Zucchella, C., Pacchetti, C., & Sandrini, G. (2014). Cognitive Rehabilitation in Parkinson’s Disease. Archives of Gerontology and Geriatrics, 38, 387-391.
https://doi.org/10.1016/j.archger.2004.04.049
[69]  Solla, P., Cugusi, L., Bertoli, M., Cereatti, A., Della Croce, U., Pani, D. et al. (2019). Sardinian Folk Dance for Individuals with Parkinson’s Disease: A Randomized Controlled Pilot Trial. The Journal of Alternative and Complementary Medicine, 25, 305-316.
https://doi.org/10.1089/acm.2018.0413
[70]  Tajiri, N., Yasuhara, T., Shingo, T., Kondo, A., Yuan, W., Kadota, T. et al. (2010). Exercise Exerts Neuroprotective Effects on Parkinson’s Disease Model of Rats. Brain Research, 1310, 200-207.
https://doi.org/10.1016/j.brainres.2009.10.075
[71]  Tanaka, K., Quadros, A. C. d., Santos, R. F., Stella, F., Gobbi, L. T. B., & Gobbi, S. (2009). Benefits of Physical Exercise on Executive Functions in Older People with Parkinson’s Disease. Brain and Cognition, 69, 435-441.
https://doi.org/10.1016/j.bandc.2008.09.008
[72]  Tierney, M. C., Nores, A., Snow, W. G., Fisher, R. H., Zorzitto, M. L., & Reid, D. W. (1994). Use of the Rey Auditory Verbal Learning Test in Differentiating Normal Aging from Alzheimer’s and Parkinson’s Dementia. Psychological Assessment, 6, 129-134.
https://doi.org/10.1037/1040-3590.6.2.129
[73]  Tillerson, J. L., Cohen, A. D., Caudle, W. M., Zigmond, M. J., Schallert, T., & Miller, G. W. (2002). Forced Nonuse in Unilateral Parkinsonian Rats Exacerbates Injury. The Journal of Neuroscience, 22, 6790-6799.
https://doi.org/10.1523/jneurosci.22-15-06790.2002
[74]  Torikoshi, S., Morizane, A., Shimogawa, T., Samata, B., Miyamoto, S., & Takahashi, J. (2020). Exercise Promotes Neurite Extensions from Grafted Dopaminergic Neurons in the Direction of the Dorsolateral Striatum in Parkinson’s Disease Model Rats. Journal of Parkinson’s Disease, 10, 511-521.
https://doi.org/10.3233/jpd-191755
[75]  Uc, E. Y., Doerschug, K. C., Magnotta, V., Dawson, J. D., Thomsen, T. R., Kline, J. N. et al. (2014). Phase I/II Randomized Trial of Aerobic Exercise in Parkinson Disease in a Community Setting. Neurology, 83, 413-425.
https://doi.org/10.1212/wnl.0000000000000644
[76]  van der Kolk, N. M., de Vries, N. M., Penko, A. L., van der Vlugt, M., Mulder, A. A., Post, B. et al. (2018). A Remotely Supervised Home-Based Aerobic Exercise Programme Is Feasible for Patients with Parkinson’s Disease: Results of a Small Randomised Feasibility Trial. Journal of Neurology, Neurosurgery & Psychiatry, 89, 1003-1005.
https://doi.org/10.1136/jnnp-2017-315728
[77]  Vučcković, M. G., Li, Q., Fisher, B., Nacca, A., Leahy, R. M., Walsh, J. P. et al. (2010). Exercise Elevates Dopamine D2 Receptor in a Mouse Model of Parkinson’s Disease: In Vivo Imaging with [18F] fallypride. Movement Disorders, 25, 2777-2784.
https://doi.org/10.1002/mds.23407
[78]  Wang, Y., Liu, H., Zhang, B., Soares, J. C., & Zhang, X. Y. (2016). Low BDNF Is Associated with Cognitive Impairments in Patients with Parkinson’s Disease. Parkinsonism & Related Disorders, 29, 66-71.
https://doi.org/10.1016/j.parkreldis.2016.05.023
[79]  Whittington, C. J., Podd, J., & Stewart-Williams, S. (2006). Memory Deficits in Parkinson’s Disease. Journal of Clinical and Experimental Neuropsychology, 28, 738-754.
https://doi.org/10.1080/13803390590954236
[80]  Williams-Gray, C. H., Mason, S. L., Evans, J. R., Foltynie, T., Brayne, C., Robbins, T. W. et al. (2013). The Campaign Study of Parkinson’s Disease: 10-Year Outlook in an Incident Population-Based Cohort. Journal of Neurology, Neurosurgery & Psychiatry, 84, 1258-1264.
https://doi.org/10.1136/jnnp-2013-305277
[81]  Witt, K., Daniels, C., Reiff, J., Krack, P., Volkmann, J., Pinsker, M. O. et al. (2008). Neuropsychological and Psychiatric Changes after Deep Brain Stimulation for Parkinson’s Disease: A Randomized, Multicentre Study. The Lancet Neurology, 7, 605-614.
https://doi.org/10.1016/s1474-4422(08)70114-5
[82]  Ye, Z., Altena, E., Nombela, C., Housden, C. R., Maxwell, H., Rittman, T. et al. (2014). Selective Serotonin Reuptake Inhibition Modulates Response Inhibition in Parkinson’s Disease. Brain, 137, 1145-1155.
https://doi.org/10.1093/brain/awu032
[83]  Ye, Z., Hanssen, H., Steinhardt, J., Tronnier, V., Rasche, D., Brüggemann, N. et al. (2021a). Subthalamic Nucleus Stimulation Impairs Sequence Processing in Patients with Parkinson’s Disease. Journal of Parkinson's Disease, 11, 1869-1879.
https://doi.org/10.3233/jpd-212778
[84]  Ye, Z., Rae, C. L., Nombela, C., Ham, T., Rittman, T., Jones, P. S. et al. (2016). Predicting Beneficial Effects of Atomoxetine and Citalopram on Response Inhibition in Parkinson’s Disease with Clinical and Neuroimaging Measures. Human Brain Mapping, 37, 1026-1037.
https://doi.org/10.1002/hbm.23087
[85]  Ye, Z., Zhang, G., Zhang, Y., Li, S., Liu, N., Zhou, X. et al. (2021b). The Role of the Subthalamic Nucleus in Sequential Working Memory in de Novo Parkinson’s Disease. Movement Disorders, 36, 87-95.
https://doi.org/10.1002/mds.28344
[86]  Zhang, G., Hou, Y., Wang, Z., & Ye, Z. (2020). Cognitive Profile of Patients with Mitochondrial Chronic Progressive External Ophthalmoplegia. Frontiers in Neurology, 11, Article 36.
https://doi.org/10.3389/fneur.2020.00036
[87]  Zigmond, M. J., Cameron, J. L., Hoffer, B. J., & Smeyne, R. J. (2012). Neurorestoration by Physical Exercise: Moving Forward. Parkinsonism & Related Disorders, 18, S147-S150.
https://doi.org/10.1016/s1353-8020(11)70046-3
[88]  Zoladz, J. A., Majerczak, J., Zeligowska, E., Mencel, J., Jaskolski, A., Jaskolska, A., & Marusiak, J. (2014). Moderate-Intensity Interval Training Increases Serum Brain-Derived Neurotrophic Factor Level and Decreases Inflammation in Parkinson’s Disease Patients. Journal of Physiology and Pharmacology, 65, 441-448.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133