全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钠离子电池硬碳负极材料的改性研究
Research on the Modification of Hard Carbon Anode Materials for Sodium-Ion Batteries

DOI: 10.12677/ms.2025.151013, PP. 106-114

Keywords: 钠离子电池,硬碳,负极材料,改性
Sodium-Ion Battery
, Hard Carbon, Anode Material, Modification

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于锂资源储量的短缺和价格上涨的压力,钠离子电池重新受到公众的关注,并在电网储能和低速车辆领域显示出巨大的应用潜力,以达到与锂离子电池互补的目的。对于钠离子电池的负极材料,硬碳是最有可能商业化使用的材料。然而,在其商业化之前还有很多工作要做。本文首先介绍了硬碳的定义和微观结构。根据钠在硬碳中的储存机理,将其大致分为“插入–填充”、“吸附–插入”、“吸附–填充”和“多级”四种模式。最后,从提高硬碳电化学性能的角度,对近年来提出的性能改进策略进行了总结。基于目前的认识,本文从比容量、库伦效率、倍率性能和循环稳定性四个方面总结了硬碳性能增强策略。
Due to the shortage of lithium resource reserves and the pressure of rising prices, sodium-ion batteries have regained public attention and have shown great application potential in the field of grid energy storage and low-speed vehicles to achieve the purpose of complementing lithium-ion batteries. For the anode material of sodium-ion batteries, hard carbon is the most likely material for commercial use. However, there is still a lot of work to be done before it can be commercialized. This article first introduces the definition and microstructure of hard carbon. According to the storage mechanism of sodium in hard carbon, it can be roughly divided into four modes: “insertion-filling”, “adsorption-insertion”, “adsorption-filling” and “multi-stage”. Finally, from the perspective of improving the electrochemical performance of hard carbon, the performance improvement strategies proposed in recent years are summarized. Based on the current understanding, this paper summarizes the hard carbon performance enhancement strategies from four aspects: specific capacity, coulombic efficiency, rate performance and cycle stability.

References

[1]  Morikawa, Y., Nishimura, S., Hashimoto, R., Ohnuma, M. and Yamada, A. (2019) Mechanism of Sodium Storage in Hard Carbon: An X‐Ray Scattering Analysis. Advanced Energy Materials, 10, Article ID: 1903176.
https://doi.org/10.1002/aenm.201903176
[2]  Xu, Z., Wang, J., Guo, Z., Xie, F., Liu, H., Yadegari, H., et al. (2022) The Role of Hydrothermal Carbonization in Sustainable Sodium‐Ion Battery Anodes. Advanced Energy Materials, 12, Article ID: 2200208.
https://doi.org/10.1002/aenm.202200208
[3]  Cai, W., Yao, Y., Zhu, G., Yan, C., Jiang, L., He, C., et al. (2020) A Review on Energy Chemistry of Fast-Charging Anodes. Chemical Society Reviews, 49, 3806-3833.
https://doi.org/10.1039/c9cs00728h
[4]  Mühlbauer, M.J., Dolotko, O., Hofmann, M., Ehrenberg, H. and Senyshyn, A. (2017) Effect of Fatigue/Ageing on the Lithium Distribution in Cylinder-Type Li-Ion Batteries. Journal of Power Sources, 348, 145-149.
https://doi.org/10.1016/j.jpowsour.2017.02.077
[5]  Kabir, M.M. and Demirocak, D.E. (2017) Degradation Mechanisms in Li-Ion Batteries: A State-Of-The-Art Review. International Journal of Energy Research, 41, 1963-1986.
https://doi.org/10.1002/er.3762
[6]  戴海峰, 王楠, 魏学哲, 等. 车用动力锂离子电池单体不一致性问题研究综述[J]. 汽车工程, 2014, 36(2): 181-188, 203.
[7]  Yu, Y. (2022) Sodium‐Ion Batteries: Energy Storage Materials and Technologies. Wiley.
https://doi.org/10.1002/9783527831623
[8]  Yang, W., Liu, Q., Zhao, Y., Mu, D., Tan, G., Gao, H., et al. (2022) Progress on Fe‐Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium‐Ion Batteries. Small Methods, 6, Article ID: 2200555.
https://doi.org/10.1002/smtd.202200555
[9]  Ud Din, M.A., Li, C., Zhang, L., Han, C. and Li, B. (2021) Recent Progress and Challenges on the Bismuth-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. Materials Today Physics, 21, Article ID: 100486.
https://doi.org/10.1016/j.mtphys.2021.100486
[10]  Liu, Y., Jiang, S.P. and Shao, Z. (2020) Intercalation Pseudocapacitance in Electrochemical Energy Storage: Recent Advances in Fundamental Understanding and Materials Development. Materials Today Advances, 7, Article ID: 100072.
https://doi.org/10.1016/j.mtadv.2020.100072
[11]  Fatima, H., Zhong, Y., Wu, H. and Shao, Z. (2021) Recent Advances in Functional Oxides for High Energy Density Sodium-Ion Batteries. Materials Reports: Energy, 1, Article ID: 100022.
https://doi.org/10.1016/j.matre.2021.100022
[12]  Cheng, H., Shapter, J.G., Li, Y. and Gao, G. (2021) Recent Progress of Advanced Anode Materials of Lithium-Ion Batteries. Journal of Energy Chemistry, 57, 451-468.
https://doi.org/10.1016/j.jechem.2020.08.056
[13]  Tan, H., Chen, D., Rui, X. and Yu, Y. (2019) Peering into Alloy Anodes for Sodium‐ion Batteries: Current Trends, Challenges, and Opportunities. Advanced Functional Materials, 29, Article ID: 1808745.
https://doi.org/10.1002/adfm.201808745
[14]  He, W., Chen, K., Pathak, R., Hummel, M., Reza, K.M., Ghimire, N., et al. (2021) High-Mass-Loading Sn-Based Anode Boosted by Pseudocapacitance for Long-Life Sodium-Ion Batteries. Chemical Engineering Journal, 414, Article ID: 128638.
https://doi.org/10.1016/j.cej.2021.128638
[15]  Darwiche, A., Dugas, R., Fraisse, B. and Monconduit, L. (2016) Reinstating Lead for High-Loaded Efficient Negative Electrode for Rechargeable Sodium-Ion Battery. Journal of Power Sources, 304, 1-8.
https://doi.org/10.1016/j.jpowsour.2015.10.087
[16]  Ezpeleta, I., Freire, L., Mateo‐Mateo, C., Nóvoa, X.R., Pintos, A. and Valverde‐Pérez, S. (2022) Characterisation of Commercial Li‐ion Batteries Using Electrochemical Impedance Spectroscopy. ChemistrySelect, 7, e202104464.
https://doi.org/10.1002/slct.202104464
[17]  Chahbaz, A., Meishner, F., Li, W., Ünlübayir, C. and Uwe Sauer, D. (2021) Non-Invasive Identification of Calendar and Cyclic Ageing Mechanisms for Lithium-Titanate-Oxide Batteries. Energy Storage Materials, 42, 794-805.
https://doi.org/10.1016/j.ensm.2021.08.025
[18]  Hogrefe, C., Waldmann, T., Hölzle, M. and Wohlfahrt-Mehrens, M. (2023) Direct Observation of Internal Short Circuits by Lithium Dendrites in Cross-Sectional Lithium-Ion in Situ Full Cells. Journal of Power Sources, 556, Article ID: 232391.
https://doi.org/10.1016/j.jpowsour.2022.232391
[19]  Seaman, A., Dao, T. and McPhee, J. (2014) A Survey of Mathematics-Based Equivalent-Circuit and Electrochemical Battery Models for Hybrid and Electric Vehicle Simulation. Journal of Power Sources, 256, 410-423.
https://doi.org/10.1016/j.jpowsour.2014.01.057
[20]  Alvin, S., Chandra, C. And Kim, J. (2020) Extended Plateau Capacity of Phosphorus-Doped Hard Carbon Used as an Anode in Na-and K-Ion Batteries. Chemical Engineering Journal, 391, Article ID: 123576.
https://doi.org/10.1016/j.cej.2019.123576
[21]  Jin, Q., Wang, K., Feng, P., et al. (2020) Surface-Dominated Storage of Heteroatoms-Doping Hard Carbon for Sodium-Ion Batteries. Energy Storage Materials, 27, 43-50.
https://doi.org/10.1016/j.ensm.2020.01.014
[22]  Tang, Z., Zhang, R., Wang, H., et al. (2023) Revealing the Closed Pore Formation of Waste Wood-Derived Hard Carbon for Advanced Sodium-Ion Battery. Nature Communications, 14, Article No. 6024.
https://doi.org/10.1038/s41467-023-39637-5
[23]  Shao, W., Cao, Q., Liu, S., et al. (2022) Replacing “Alkyl” with “Aryl” for Inducing Accessible Channels to Closed Pores as Plateau-Dominated Sodium-Ion Battery Anode. SusMat, 2, 319-334.
https://doi.org/10.1002/sus2.68
[24]  Svirinovsky-Arbeli, A., Juelsholt, M., May, R., Kwon, Y. and Marbella, L.E. (2024) Using NMR Spectroscopy to Link Structure to Function at the Li Solid Electrolyte Interphase. Joule, 8, 1919-1935.
[25]  Chen, S., Peng, Q., Wei, Z., Li, Y., Yue, Y., Zhang, Y., et al. (2024) Revealing the Quasi-Solid-State Electrolyte Role on the Thermal Runaway Behavior of Lithium Metal Battery. Energy Storage Materials, 70, Article ID: 103481.
https://doi.org/10.1016/j.ensm.2024.103481
[26]  Yang, M.Y., Zybin, S.V., Das, T., Merinov, B.V., Goddard, W.A., Mok, E.K., Hah, H.J., Han, H.E., Choi, Y.C. and Kim, S.H. (2022) Characterization of the Solid Electrolyte Interphase at the Li Metal-Ionic Liquid Interface. Advanced Energy Materials, 13, Article ID: 2202949.
[27]  Hu, J.Y., Wang, H.W., Yuan, F., Wang, J.L., Zhang, H.D., Zhao, R.Y., Wu, Y.Y., Kang, F.Y. and Zhai, D.Y. (2024) Deciphering the Formation and Accumulation of Solid-Electrolyte Interphases in Na and K Carbonate-Based Batteries. Nano Letters, 24, 1673-1678.
[28]  Heiskanen, S.K., Laszczynski, N. and Lucht, B.L. (2020) Perspective—surface Reactions of Electrolyte with LiNixCoyMnzO2 Cathodes for Lithium Ion Batteries. Journal of The Electrochemical Society, 167, article ID: 100519.
https://doi.org/10.1149/1945-7111/ab981c
[29]  Hinkle, C. (2014) Chemical Synthesis, Computational Modeling, and Surface Reactions of Silicon Nanotube Anodes and Silicate Cathodes for Lithium-Ion Batteries. APS Meeting Abstracts.
[30]  Ahn, J.Y., et al. (2023) Edge-Protected Ni-Enriched LiNixCoyMnzO2 Cathode Materials by Interface Modification with a Si-and F-Functionalized Surface Modifier. ACS Sustainable Chemistry & Engineering, 11, 4342-4352.
[31]  Oh, J.A.S., Deysher, G., Ridley, P., et al. (2023) High-Performing All-Solid-State Sodium-Ion Batteries Enabled by the Presodiation of Hard Carbon. Advanced Energy Materials, 13, Article ID: 2300776.
https://doi.org/10.1002/aenm.202300776
[32]  Yang, J., Wang, X., Dai, W., Lian, X., Cui, X., Zhang, W., et al. (2021) From Micropores to Ultra-Micropores Inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage. Nano-Micro Letters, 13, Article No. 98.
https://doi.org/10.1007/s40820-020-00587-y
[33]  Zhao, X., Ding, Y., Xu, Q., Yu, X., Liu, Y. and Shen, H. (2019) Low‐Temperature Growth of Hard Carbon with Graphite Crystal for Sodium‐Ion Storage with High Initial Coulombic Efficiency: A General Method. Advanced Energy Materials, 9, Article ID: 1803648.
https://doi.org/10.1002/aenm.201803648
[34]  Zhao, J., He, X., Lai, W., Yang, Z., Liu, X., Li, L., et al. (2023) Catalytic Defect‐Repairing Using Manganese Ions for Hard Carbon Anode with High‐Capacity and High‐Initial‐Coulombic‐Efficiency in Sodium‐Ion Batteries. Advanced Energy Materials, 13, Article ID: 2300444.
https://doi.org/10.1002/aenm.202300444
[35]  Lu, H., Chen, X., Jia, Y., Chen, H., Wang, Y., Ai, X., et al. (2019) Engineering Al2O3 Atomic Layer Deposition: Enhanced Hard Carbon-Electrolyte Interface Towards Practical Sodium Ion Batteries. Nano Energy, 64, Article ID: 103903.
https://doi.org/10.1016/j.nanoen.2019.103903
[36]  Wang, G., Yu, M. and Feng, X. (2021) Carbon Materials for Ion-Intercalation Involved Rechargeable Battery Technologies. Chemical Society Reviews, 50, 2388-2443.
https://doi.org/10.1039/d0cs00187b
[37]  Kamiyama, A., Kubota, K., Nakano, T., Fujimura, S., Shiraishi, S., Tsukada, H., et al. (2019) High-Capacity Hard Carbon Synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery. ACS Applied Energy Materials, 3, 135-140.
https://doi.org/10.1021/acsaem.9b01972
[38]  Chen, B., Yang, L., Bai, X., Wu, Q., Liang, M., Wang, Y., et al. (2021) Heterostructure Engineering of Core‐Shelled Sb@Sb2O3 Encapsulated in 3D N‐Doped Carbon Hollow‐Spheres for Superior Sodium/Potassium Storage. Small, 17, Article ID: 2006824.
https://doi.org/10.1002/smll.202006824
[39]  Zhao, X., Gong, F., Zhao, Y., Huang, B., Qian, D., Wang, H., et al. (2020) Encapsulating Nis Nanocrystal into Nitrogen-Doped Carbon Framework for High Performance Sodium/potassium-Ion Storage. Chemical Engineering Journal, 392, Article ID: 123675.
https://doi.org/10.1016/j.cej.2019.123675
[40]  Cui, R.C., Xu, B., Dong, H.J., Yang, C.C. and Jiang, Q. (2020) N/O Dual‐Doped Environment‐Friendly Hard Carbon as Advanced Anode for Potassium‐Ion Batteries. Advanced Science, 7, Article ID: 1902547.
https://doi.org/10.1002/advs.201902547
[41]  Zhao, Q., Zheng, Q., Li, S., He, B., Wu, X., Wang, Y., et al. (2023) Nitrogen/Oxygen/Sulfur Tri-Doped Hard Carbon Nanospheres Derived from Waste Tires with High Sodium and Potassium Anodic Performances. Inorganic Chemistry Frontiers, 10, 2574-2585.
https://doi.org/10.1039/d2qi02378d
[42]  Ma, X., Xiao, N., Xiao, J., Song, X., Guo, H., Wang, Y., et al. (2021) Nitrogen and Phosphorus Dual-Doped Porous Carbons for High-Rate Potassium Ion Batteries. Carbon, 179, 33-41.
https://doi.org/10.1016/j.carbon.2021.03.067
[43]  Xu, S., Cai, L., Niu, P., Li, Z., Wei, L., Yao, G., et al. (2021) The Creation of Extra Storage Capacity in Nitrogen-Doped Porous Carbon as High-Stable Potassium-Ion Battery Anodes. Carbon, 178, 256-264.
https://doi.org/10.1016/j.carbon.2021.03.039
[44]  Zhao, Q., Meng, Y., Yang, L., He, X., He, B., Liu, Y., et al. (2019) Facile Synthesis of Phosphorus-Doped Carbon under Tuned Temperature with High Lithium and Sodium Anodic Performances. Journal of Colloid and Interface Science, 551, 61-71.
https://doi.org/10.1016/j.jcis.2019.05.021
[45]  Zhao, Q., Meng, Y., Li, J. and Xiao, D. (2019) Sulfur and Nitrogen Dual-Doped Porous Carbon Nanosheet Anode for Sodium Ion Storage with a Self-Template and Self-Porogen Method. Applied Surface Science, 481, 473-483.
https://doi.org/10.1016/j.apsusc.2019.03.143
[46]  Akula, S., Balasubramaniam, B., Varathan, P. and Sahu, A.K. (2019) Nitrogen-Fluorine Dual Doped Porous Carbon Derived from Silk Cotton as Efficient Oxygen Reduction Catalyst for Polymer Electrolyte Fuel Cells. ACS Applied Energy Materials, 2, 3253-3263.
https://doi.org/10.1021/acsaem.9b00100
[47]  Yang, X., Li, L., Zhao, W., Wang, M., Yang, W., Tian, Y., et al. (2023) Characteristics and Functional Application of Cellulose Fibers Extracted from Cow Dung Wastes. Materials, 16, Article 648.
https://doi.org/10.3390/ma16020648

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133