全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TCAP分离氢同位素的研究进展
Advances in the Thermal Cycling Absorption Process for Hydrogen Isotopes Separation

DOI: 10.12677/ms.2025.151011, PP. 86-96

Keywords: 氢同位素,TCAP,钯
Hydrogen Isotopes
, TCAP, Palladium

Full-Text   Cite this paper   Add to My Lib

Abstract:

当今世界能源需求不断上涨,发展核聚变堆是满足未来能源需求的途径之一。氢同位素分离技术是核聚变堆中广泛应用的技术,分离方法众多,其中热循环吸附法(TCAP)具有自动化程度高、分离能力强、氚滞留量低等优点。本文综述了TCAP技术的发展,重点介绍了不同填充材料(Pd/k、Pd/Al2O3、Pd-Pt)的性能和制备工艺以及国内外TCAP研究进展。通过比较国内外的研究成果,本文探讨了TCAP技术在提高氢同位素分离效率和降低成本方面的潜力。文章最后对未来研究方向进行了展望,包括新型材料的开发,Pd材料性能的提升以及TCAP分离系统效率优化等。
In today’s world, energy demand is rising, and the development of nuclear fusion reactors is one of the ways to meet future energy needs. Hydrogen isotope separation technology is a widely used technology in nuclear fusion reactors, and there are many separation methods, among which thermal cycling adsorption process (TCAP) has the advantages of high degree of automation, strong separation capacity and low tritium retention capacity. In this paper, the development of TCAP technology is reviewed, and the properties and preparation processes of different filling materials (Pd/k, Pd/Al2O3, Pd-Pt) and the research progress of TCAP at home and abroad are highlighted. By comparing the research results at home and abroad, this paper explores the potential of TCAP technology in improving the efficiency of hydrogen isotope separation and reducing costs. Finally, the future research directions are prospected, including the development of new materials, the improvement of the performance of Pd materials, and the optimization of the efficiency of TCAP separation system.

References

[1]  Zhiznin, S.Z., Timokhov, V.M. and Gusev, A.L. (2020) Economic Aspects of Nuclear and Hydrogen Energy in the World and Russia. International Journal of Hydrogen Energy, 45, 31353-31366.
https://doi.org/10.1016/j.ijhydene.2020.08.260
[2]  Shahin, M.S., Orhan, M.F., Saka, K., Hamada, A.T. and Uygul, F. (2023) Energy Assessment of an Integrated Hydrogen Production System. International Journal of Thermofluids, 17, Article ID: 100262.
https://doi.org/10.1016/j.ijft.2022.100262
[3]  Rosanvallon, S., Torcy, D., Chon, J.K. and Dammann, A. (2016) Waste management plans for ITER. Fusion Engineering and Design, 109, 1442-1446.
https://doi.org/10.1016/j.fusengdes.2015.12.002
[4]  Cui, S., Zhang, D., Lian, Q., Cheng, J., Tian, W., Su, G.H., et al. (2017) Evaluation and Optimization of Tritium Breeding, Shielding and Nuclear Heating Performances of the Helium Cooled Solid Breeder Blanket for CFETR. International Journal of Hydrogen Energy, 42, 24263-24277.
https://doi.org/10.1016/j.ijhydene.2017.07.215
[5]  Rajablou, L., Motevalli, S.M. and Fadaei, F. (2022) Study of Alpha Particle Concentration Effects as the Ash of Deuterium-Tritium Fusion Reaction on Ignition Criteria. Physica Scripta, 97, Article ID: 095601.
https://doi.org/10.1088/1402-4896/ac831a
[6]  Yamamoto, I. and Kanagawa, A. (1993) Similarity in Pressure Dependence among Separation Factors of Thermal Diffusion Column in Total-Reflux Operation. Journal of Nuclear Science and Technology, 30, 831-833.
https://doi.org/10.1080/18811248.1993.9734554
[7]  Park, D., Urm, J.J., Lee, J., Chang, M.H. and Lee, J.M. (2021) Dynamic Optimization of Cryogenic Distillation Operation for Hydrogen Isotope Separation in Fusion Power Plant. International Journal of Hydrogen Energy, 46, 24135-24148.
https://doi.org/10.1016/j.ijhydene.2021.04.199
[8]  Andreev, B.M. (2001) Separation of Hydrogen Isotopes in H2O-H2S System. Separation Science and Technology, 36, 1949-1989.
https://doi.org/10.1081/ss-100104764
[9]  Yasuda, S., Matsushima, H., Harada, K., Tanii, R., Terasawa, T., Yano, M., et al. (2022) Efficient Hydrogen Isotope Separation by Tunneling Effect Using Graphene-Based Heterogeneous Electrocatalysts in Electrochemical Hydrogen Isotope Pumping. ACS Nano, 16, 14362-14369.
https://doi.org/10.1021/acsnano.2c04655
[10]  Mistry, K.A., Shenoy, N.S., Bhanja, K., Kohli, D.K. and Shenoy, K.T. (2023) Modeling and Experimental Investigation for Development of Combined Electrolysis and Catalytic Exchange Process for Hydrogen Isotope Separation. Chemical Engineering Research and Design, 192, 487-499.
[11]  Glueckauf, E. and Kitt, G.P. (1957) Hydrogen Isotope Separation by Chromatography. Proceedings of the International Symposium on Isotope Separation, Amsterdam, 23-27 April 1957, 210-226.
[12]  唐涛, 陆光达. 钯-氢体系的物理化学性质[J]. 稀有金属, 2003, 27(2): 278-285.
[13]  Lee, M.W. (1986) Tritium Separation Using Metal Hydrides. Gordon Research Conference, Oxnard, 10 February 1986.
[14]  Heung, L.K., Sessions, H.T., Poore, A.S., Jacobs, W.D. and Williams, C.S. (2008) Next-Generation TCAP Hydrogen Isotope Separation Process. Fusion Science and Technology, 54, 399-402.
https://doi.org/10.13182/fst08-33
[15]  Lee, M.W. (2000) Thermal Cycling Absorption Process—A New Way to Separate Hydrogen Isotopes. Westinghouse Savannah River Co. WSRC-MS-2000-00061, 197-200.
[16]  雷强华, 罗德礼, 熊义富, 等. 载钯硅藻土制备及吸/放氢性能分析[J]. 稀有金属, 2006, 30(6): 746-750.
[17]  Fisher, I.A. (1993) Structural Stability of 1100 [Degree] C Heated Pd/k during Absorption Cycling in Protium. [Palladium supported on kieselguhr][R]. Savannah River Site (SRS).
[18]  吉亚莉, 刘晓鹏, 吕芳, 等. 载钯硅藻土复合材料吸/放氢循环性能和抗粉化性能研究[J]. 稀有金属, 2011, 35(2): 238-243.
[19]  Strzelczyk, F., Leterq, D., Wilhelm, A.M. and Steinbrunn, A. (1998) Gas-Solid Chromatographic Separation of Hydrogen Isotopes: A Comparison between Two Palladium Bearing Materials—Alumina and Kieselguhr. Journal of Chromatography A, 822, 326-331.
https://doi.org/10.1016/s0021-9673(98)00618-9
[20]  Fukada, S., Samsun-Baharin, M. and Fujiwara, H. (2002) Hydrogen Absorption-Desorption Cycle Experiment of Pd-Al2O3 Pellets. International Journal of Hydrogen Energy, 27, 177-181.
https://doi.org/10.1016/s0360-3199(01)00101-x
[21]  黄国强, 雷强华, 钱晓静, 等. 氢同位素分离用涂钯氧化铝性能研究[C]//第七届中国功能材料及其应用学术会议论文集(第5分册). 重庆: 《功能材料》期刊社, 2010: 426-428.
[22]  Jiang, Y., Ji, F., Feng, Y., Ye, X. and Ni, M. (2022) Effect of Alumina on Thermodynamic Performance of Palladium-H2 (D2) System. International Journal of Hydrogen Energy, 47, 18088-18097.
https://doi.org/10.1016/j.ijhydene.2022.03.292
[23]  龙培虹, 白天驹, 熊良银, 等. 载钯氧化铝复合材料的制备及性能研究[J]. 原子能科学技术, 2023, 57(6): 1089-1098.
[24]  Morimoto, Y., Kojima, S., Sasaki, T., Matsuyama, M., Hara, M., Akamaru, S., et al. (2006) Development of a Tritium Separation Process Using SDGC. Fusion Engineering and Design, 81, 821-826.
https://doi.org/10.1016/j.fusengdes.2005.07.026
[25]  Liu, R., Peng, Y., Rong, W. and Cao, Q. (2024) Thermodynamics and Kinetics Hydrogen Isotope Effects of Hydrogen/Deuterium Absorption in Pd-5wt.%Pt Alloy. International Journal of Hydrogen Energy, 50, 637-647.
https://doi.org/10.1016/j.ijhydene.2023.07.329
[26]  Lee, M., Paek, S., Ahn, D., Kim, K., Yim, S. and Chung, H. (2007) Preparation of a Pd-Pt Alloy on Alumina and Its Application for a Gas Chromatography. Journal of Alloys and Compounds, 441, 368-373.
https://doi.org/10.1016/j.jallcom.2006.09.138
[27]  Shang, J., Li, G., Webley, P.A. and Liu, J.Z. (2016) A Density Functional Theory Study for the Adsorption of Various Gases on a Caesium-Exchanged Trapdoor Chabazite. Computational Materials Science, 122, 307-313.
https://doi.org/10.1016/j.commatsci.2016.05.040
[28]  邓潇君, 熊仁金, 闫霞艳, 等. 新型氢同位素分离材料研究进展[J]. 材料导报, 2023, 37(13): 1-8.
[29]  Heung, L.K., Sessions, H.T. and Xiao, X. (2011) TCAP Hydrogen Isotope Separation Using Palladium and Inverse Columns. Fusion Science and Technology, 60, 1331-1334.
https://doi.org/10.13182/fst11-t39
[30]  Xiao, X., Heung, L.K. and Sessions, H.T. (2015) Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process. Fusion Science and Technology, 67, 643-646.
https://doi.org/10.13182/fst14-t100
[31]  Ana, G., Niculescu, A., Bornea, A., Zamfirache, M. and Draghia, M. (2018) TCAP Hydrogen Isotope Separation Process under Development at ICSI Rm. Valcea. IEEE Transactions on Plasma Science, 46, 2668-2671.
https://doi.org/10.1109/tps.2018.2796627
[32]  Ducret, D., Ballanger, A., Steimetz, J., Laquerbe, C., Baudouin, O. and Sere Peyrigain, P. (2001) Hydrogen Isotopes Separation by Thermal Cycling Absorption Process. Fusion Engineering and Design, 58, 417-421.
https://doi.org/10.1016/s0920-3796(01)00475-6
[33]  Ducret, D., Laquerbe, C., Ballanger, A., Steimetz, J., Porri, V., Verdin, J.P., et al. (2002) Separation of Hydrogen Isotopes by Thermal Cycling Absorption Process: An Experimental Device. Fusion Science and Technology, 41, 1092-1096.
https://doi.org/10.13182/fst02-a22752
[34]  Laquerbe, C., Contreras, S., Baudouin, O. and Demoment, J. (2008) Modelling Aging Effects on a Thermal Cycling Absorption Process Column. Fusion Science and Technology, 54, 403-406.
https://doi.org/10.13182/fst08-a1840
[35]  Guangda, L., Guoqiang, J. and Cansheng, S. (1995) An Experimental Investigation for Hydrogen and Deuterium Separation by Thermal Cycling Absorption Process. Fusion Technology, 28, 672-675.
https://doi.org/10.13182/fst95-a30481
[36]  黄国强, 罗德礼, 雷强华, 等. 热循环吸附装置的初步氢同位素分离[J]. 化学工程, 2010, 38(10): 215-218, 228.
[37]  王伟伟, 张玲, 余铭铭, 等. TCAP 氢同位素分离装置的小型化及分离性能[J]. 同位素, 2012, 25(1): 37-41.
[38]  Zhou, J., Zhang, X., Hao, S. and Huang, W. (2014) Dynamic Simulation of Thermal Cycling Absorption Process with Twin Columns for Hydrogen Isotopes Separation. International Journal of Hydrogen Energy, 39, 13873-13879.
https://doi.org/10.1016/j.ijhydene.2014.04.025
[39]  Yan, Y., Li, F., Deng, L., Wang, M., Tang, T., Fang, M., et al. (2023) A Fresh Look at Thermal Cycling Absorption Process for Hydrogen Isotopes Separation by Dynamic Simulation: Initial Feeding Process and Total Reflux Mode. International Journal of Hydrogen Energy, 48, 23894-23908.
https://doi.org/10.1016/j.ijhydene.2023.03.101
[40]  Wang, W., Xia, L., Mao, Y., Wen, C., Li, H., Chen, X., et al. (2021) On-Line Micro GC Testing of Protium Analysis in DT Fuels from TCAP Products. Fusion Engineering and Design, 170, Article ID: 112481.
https://doi.org/10.1016/j.fusengdes.2021.112481
[41]  Deng, L., Chen, C., Huang, G., Shi, Y., Yao, Y., Hu, J., et al. (2023) The Oil Bath Thermal Cycling Absorption Process Design and Separation Process Research. International Journal of Hydrogen Energy, 48, 22132-22140.
https://doi.org/10.1016/j.ijhydene.2023.01.236

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133