全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Business Ecosystems and Differential Equations: Computer Simulations of Competition and Competitiveness Scenarios

DOI: 10.4236/ojbm.2025.131036, PP. 688-708

Keywords: Differential Equations, Numerical Methods, Competition of Companies

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the interactions that occur within a business niche and their future predictions can play an important role in decision-making in situations of competition, competition and/or cooperation. The similarities of interactions between species and the corporate world make it possible to use systems of ordinary differential equations, containing two companies and their interconnections. The purposes of this work were to mathematically model business ecosystems via systems of differential equations, using own codes written in computer language R; to investigate scenarios of competition and concurrence between companies under the effect of noise that simulates market variations, the impacts of advertising actions, spurious interference via random variables and the effects of external adversities. For this, the Euler’s and Euler-Maruyama numerical methods were used in the discretizations of the equations. Finally, several scenarios were developed, altering, jointly and/or separately, each factor of the equations, indicating what they represent and the impact they have on the companies involved, associating them with different types of noise and defining a time course for the companies’ performance.

References

[1]  Bajari, P. (2001). Comparing Competition and Collusion: A Numerical Approach. Economic Theory, 18, 187-205.
https://doi.org/10.1007/pl00004128
[2]  Bassanezi, R. C. (2012). Equações diferenciais e suas aplicações. UFABC.
[3]  Boyce, W. E., & DiPrima, R. C. (2017). Equações Diferenciais Elementares e Problemas de Valores de Contorno (10th ed.). LTC.
[4]  Braumann, C. (2019). Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance. Wiley.
https://doi.org/10.1002/9781119166092
[5]  Buchanan, J., & Turner, P. R. (1992). Numerical Methods and Analysis. McGraw-Hill.
[6]  Chalikias, M., Lalou, P., Skordoulis, M., Papadopoulos, P., & Fatouros, S. (2020). Bank Oligopoly Competition Analysis Using a Differential Equations Model. International Journal of Operational Research, 38, 137-145.
https://doi.org/10.1504/ijor.2020.106364
[7]  Chen, Z. J. (2015). The Model of Ecological System of Real Estate Entreprises and the Research on Dynamic Strategic Cost. Canadian Social Science, 11, 122-126.
[8]  Chiavenato, I. (2004). Introdução à teoria geral da administração (7th ed.). Elsevier.
[9]  da Silva, F. C. A., Dunczmal, L. H., & Dunczmal, D. B. (2016). Introdução aos Métodos de Simulação e Análise Numérica para Equações Diferenciais Estocásticas (Vol. 80). SBMAC: Notas em Matemática Aplicada.
[10]  Garcia, R. de O., & Silveira, G. P. (2018). Soluções numéricas de EDO’s aplicadas no estudo de dinâmica populacional. C.Q.D.–Revista Eletrônica Paulista de Matemática, 13, 46-69.
https://doi.org/10.21167/cqdvol13201823169664roggps4669
[11]  Hubert, R. (2018). Análise das estratégicas de interação entre grandes empresas e startups para o desenvolvimento de inovações. Dissertação de Mestrado: UFSC.
[12]  Jha, A., Sahani, S. K., Jha, A., Sahani, K., & Poudel, M. P. (2024). A Comparative Study on Strategic Analysis and Forecasting on Profit Maximization and Operational Efficiency in Manufacturing Business through Differential Equations. Journal of Innovative Applied Mathematics and Computational Sciences, 4, 11-25.
[13]  Kirjanen, A., Malafeyev, O., Zaitseva, I., Kovshov, A., & Kolesov, D. (2020). Dynamics of Competitive Interaction between Two Mining Enterprises and One Processing: Existence and Stability of the Equilibrium Point. E3S Web of Conferences, 193, Article No. 01051.
https://doi.org/10.1051/e3sconf/202019301051
[14]  Konstantinov, R. V., & Polovinkin, E. S. (2004). Mathematical Simulation of a Dynamic Game in the Enterprise Competition Problem. Cybernetics and Systems Analysis, 40, 720-725.
https://doi.org/10.1007/s10559-005-0009-8
[15]  Liao, M., Xu, C., & Tang, X. (2014). Dynamical Behaviors for a Competition and Cooperation Model of Enterprises with Two Delays. Nonlinear Dynamics, 75, 257-266.
https://doi.org/10.1007/s11071-013-1063-9
[16]  Silveira, G. P., & Garcia, R. d. O. (2020). Análise das soluções numéricas do modelo do tipo presa-predador de Holling-Tanner. C.Q.D.-Revista Eletrônica Paulista de Matemática, 17, 84-96.
https://doi.org/10.21167/cqdvol17ermac202023169664gpsrog8496
[17]  Silveira, G. P., & Garcia, R. d. O. (2024). The Different Trajectories Obtained from the May-Holling-Tanner Predator-Prey Model via Numerical Solutions. Cuadernos de Educación y Desarrollo, 16, e4465.
https://doi.org/10.55905/cuadv16n6-068
[18]  Xu, C., Li, P., Xiao, Q., & Yuan, S. (2019). New Results on Competition and Cooperation Model of Two Enterprises with Multiple Delays and Feedback Controls. Boundary Value Problems, 2019, Article No. 36.
https://doi.org/10.1186/s13661-019-1145-9
[19]  Xu, C., Liao, M., & Li, P. (2019). Bifurcation Control of a Fractional-Order Delayed Competition and Cooperation Model of Two Enterprises. Science China Technological Sciences, 62, 2130-2143.
https://doi.org/10.1007/s11431-018-9376-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133