Porcine Reproductive and Respiratory Syndrome (PRRS) is considered one of the diseases causing the greatest economic losses in swine production. In Mexico, various commercial vaccines are used to mitigate the severity of the infection. However, the effect of these biologicals on the morphology of cell lines permissive to infection by the virus (PRRSv) has not been evaluated. This study assessed the effect of three commercial vaccines available in Mexico by evaluating actin cytoskeleton rearrangements in MARC-145 cells. The infection altered the morphology of the cells, inducing the formation of filopodia and the loss of stress fibers. Quantitative analysis of the filopodia revealed an increase in their number and length, showing significant differences in both characteristics depending on the vaccine strain of the virus. These findings suggest that PRRSv manipulates the host’s actin cytoskeleton through the formation of filopodia, which may play a critical role in viral propagation. These results open a promising avenue for research aimed at developing potential therapeutic strategies targeting cytoskeletal structures to reduce PRRSv infection and its impact on swine health.
References
[1]
Guo, Z., Chen, X., Li, R., Qiao, S. and Zhang, G. (2018) The Prevalent Status and Genetic Diversity of Porcine Reproductive and Respiratory Syndrome Virus in China: A Molecular Epidemiological Perspective. VirologyJournal, 15, Article No. 2. https://doi.org/10.1186/s12985-017-0910-6
[2]
Pileri, E. and Mateu, E. (2016) Review on the Transmission Porcine Reproductive and Respiratory Syndrome Virus between Pigs and Farms and Impact on Vaccination. VeterinaryResearch, 47, Article No. 108. https://doi.org/10.1186/s13567-016-0391-4
[3]
Pollard, T.D. and Earnshaw, W.C. (2008) Cell Biology. 2nd Edition, Saunders Elsevier.
[4]
López-Heydeck, S.M., Alonso-Morales, R.A., Mendieta-Zerón, H. and Vázquez-Chagoyán, J.C. (2015) Síndrome reproductivo y respiratorio del cerdo (PRRS). Revista Mexicana de Ciencias Pecuarias, 6, 69-89. https://doi.org/10.22319/rmcp.v6i1.4024
[5]
Montaner-Tarbes, S., del Portillo, H.A., Montoya, M. and Fraile, L. (2019) Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). FrontiersinVeterinaryScience, 6, Article No. 38. https://doi.org/10.3389/fvets.2019.00038
[6]
Rowland, R.R., Kervin, R., Kuckleburg, C., Sperlich, A. and Benfield, D.A. (1999) The Localization of Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein to the Nucleolus of Infected Cells and Identification of a Potential Nucleolar Localization Signal Sequence. VirusResearch, 64, 1-12. https://doi.org/10.1016/s0168-1702(99)00048-9
[7]
Therrien, D., St-Pierre, Y. and Dea, S. (2000) Preliminary Characterization of Protein Binding Factor for Porcine Reproductive and Respiratory Syndrome Virus on the Surface of Permissive and Non-Permissive Cells. ArchivesofVirology, 145, 1099-1116. https://doi.org/10.1007/s007050070112
[8]
Wang, Q., Yi, H., Guo, Y., Sun, Y., Yu, Z., Lu, L., et al. (2023) PCNA Promotes PRRSV Replication by Increasing the Synthesis of Viral Genome. VeterinaryMicrobiology, 281, Article ID: 109741. https://doi.org/10.1016/j.vetmic.2023.109741
[9]
Jardon, S., García, C.G., Quintanar, D., Nieto, J.L., Juárez, M.d.L. and Mendoza, S.E. (2018) Effect of Two Glycyrrhizinic Acid Nanoparticle Carriers on MARC-145 Cells Actin Filaments. AppliedNanoscience, 8, 1111-1121. https://doi.org/10.1007/s13204-018-0758-0
[10]
Sacanelles, R. and Albert, J. (2016) El citoesqueleto: Un componente fundamental en la arquitectura y en la fisiología celular. UNAM. Revistadeeducaciónbioquímica, 35, 102-114.
[11]
Becker, W.M., Kleinsmith, L.J., Hardin, J., Bertoni, G.P., Elías, I.A. and Céspedes, A.M. (2007) El mundo de la célula. 6ta edición, Ed. Pearson Educación.
[12]
Iwasa, J. and Marshall, W. (2020) Karp’s Cell and Molecular Biology. 9th Edition, John Wiley and Sons.
[13]
Alberts, B., Heald., R., Johnson, A., Morgan, D., Martin, R., Roberts, K. and Walter, P. (2022) Molecular Biology of the Cell. 7th Edition, W.W. Norton & Co.
[14]
Cooper, G.M. and Hausman, R.E. (2009) The Cell: A Molecular Approach. 5th Edition, ASM Press.
[15]
Pollard, T.D. and Borisy, G.G. (2003) Cellular Motility Driven by Assembly and Disassembly of Actin Filaments. Cell, 112, 453-465. https://doi.org/10.1016/s0092-8674(03)00120-x
[16]
Pollard, T.D. (2007) Regulation of Actin Filament Assembly by Arp2/3 Complex and Formins. AnnualReviewofBiophysicsandBiomolecularStructure, 36, 451-477. https://doi.org/10.1146/annurev.biophys.35.040405.101936
[17]
Fischer, R.S., Lam, P., Huttenlocher, A. and Waterman, C.M. (2019) Filopodia and Focal Adhesions: An Integrated System Driving Branching Morphogenesis in Neuronal Pathfinding and Angiogenesis. DevelopmentalBiology, 451, 86-95. https://doi.org/10.1016/j.ydbio.2018.08.015
[18]
Roy, S. and Kornberg, T.B. (2014) Paracrine Signaling Mediated at Cell-Cell Contacts. BioEssays, 37, 25-33. https://doi.org/10.1002/bies.201400122
[19]
Sherer, N.M. and Mothes, W. (2008) Cytonemes and Tunneling Nanotubules in Cell-Cell Communication and Viral Pathogenesis. TrendsinCellBiology, 18, 414-420. https://doi.org/10.1016/j.tcb.2008.07.003
[20]
Acharya, D., Reis, R., Volcic, M., Liu, G., Wang, M.K., Chia, B.S., et al. (2022) Actin Cytoskeleton Remodeling Primes Rig-I-Like Receptor Activation. Cell, 185, 3588-3602.e21. https://doi.org/10.1016/j.cell.2022.08.011
[21]
Kanlaya, R., Pattanakitsakul, S., Sinchaikul, S., Chen, S. and Thongboonkerd, V. (2009) Alterations in Actin Cytoskeletal Assembly and Junctional Protein Complexes in Human Endothelial Cells Induced by Dengue Virus Infection and Mimicry of Leukocyte Transendothelial Migration. JournalofProteomeResearch, 8, 2551-2562. https://doi.org/10.1021/pr900060g
[22]
Ingelvac PRRS MLV ficha técnica de laboratorio Boehringer-ingelheim. https://www.boehringer-ingelheim.com/mx/salud-animal-enfermedades-en-animales/productos-para-salud-animal/ingelvacr-prrs-mlv
[23]
FOSTERA PRRS ficha técnica de laboratorio ZOETIS. https://www2.zoetis.mx/content/_assets/PDF/Porcino/CE-FT-FOSTERA-PRRS-161121.pdf
[24]
PRIME PAC PRRS ficha técnica de laboratorio MSD Salud Animal. https://www.msd-salud-animal.mx/productos/prime-pac-prrs/
[25]
Cafruny, W.A., Duman, R.G., Wong, G.H., Said, S., Ward-Demo, P., Rowland, R.R., et al. (2006) Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection Spreads by Cell-to-Cell Transfer in Cultured MARC-145 Cells, Is Dependent on an Intact Cytoskeleton, and Is Suppressed by Drug-Targeting of Cell Permissiveness to Virus Infection. VirologyJournal, 3, Article No. 90. https://doi.org/10.1186/1743-422x-3-90
[26]
Delorme-Axford, E. and Coyne, C.B. (2011) The Actin Cytoskeleton as a Barrier to Virus Infection of Polarized Epithelial Cells. Viruses, 3, 2462-2477. https://doi.org/10.3390/v3122462
[27]
Suttitheptumrong, A., Mahutchariyakul, T., Rawarak, N., Reamtong, O., Boonnak, K. and Pattanakitsakul, S. (2021) Altered Moesin and Actin Cytoskeleton Protein Rearrangements Affect Transendothelial Permeability in Human Endothelial Cells upon Dengue Virus Infection and TNF-α Treatment. Viruses, 13, Article No. 2042. https://doi.org/10.3390/v13102042
[28]
Van Minnebruggen, G., Van de Walle, G.R., Favoreel, H.W., Nauwynck, H.J. and Pensaert, M.B. (2002) Temporary Disturbance of Actin Stress Fibers in Swine Kidney Cells during Pseudorabies Virus Infection. VeterinaryMicrobiology, 86, 89-94. https://doi.org/10.1016/s0378-1135(01)00493-x
[29]
Schumacher, D., Tischer, B.K., Trapp, S. and Osterrieder, N. (2005) The Protein Encoded by the Us 3 Orthologue of Marek’s Disease Virus Is Required for Efficient De-Envelopment of Perinuclear Virions and Involved in Actin Stress Fiber Breakdown. JournalofVirology, 79, 3987-3997. https://doi.org/10.1128/jvi.79.7.3987-3997.2005
[30]
Nunbhakdi-Craig, V., Craig, L., Machleidt, T. and Sontag, E. (2003) Simian Virus 40 Small Tumor Antigen Induces Deregulation of the Actin Cytoskeleton and Tight Junctions in Kidney Epithelial Cells. JournalofVirology, 77, 2807-2818. https://doi.org/10.1128/jvi.77.5.2807-2818.2003
[31]
Cheng, Y., Lou, J., Liu, C., Liu, Y., Chen, X., Liang, X., et al. (2021) Microfilaments and Microtubules Alternately Coordinate the Multistep Endosomal Trafficking of Classical Swine Fever Virus. JournalofVirology, 95, e02436-20. https://doi.org/10.1128/jvi.02436-20
[32]
Labudová, M. (2020) Cell-to-Cell Transport in Viral Families: Faster than Usual. Actavirologica, 64, 154-166. https://doi.org/10.4149/av_2020_205
[33]
Aliyu, I.A., Kumurya, A.S., Bala, J.A., Yahaya, H. and Saidu, H. (2020) Proteomes, Kinases and Signalling Pathways in Virus‐Induced Filopodia, as Potential Antiviral Therapeutics Targets. ReviewsinMedicalVirology, 31, 1-9. https://doi.org/10.1002/rmv.2202
[34]
Sasivimolrattana, T. and Bhattarakosol, P. (2023) Impact of Actin Polymerization and Filopodia Formation on Herpes Simplex Virus Entry in Epithelial, Neuronal, and T Lymphocyte Cells. FrontiersinCellularandInfectionMicrobiology, 13, Article ID: 1301859. https://doi.org/10.3389/fcimb.2023.1301859
[35]
Kalinichenko, S., Komkov, D. and Mazurov, D. (2022) HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses, 14, Article No. 152. https://doi.org/10.3390/v14010152
[36]
Hunziker, A., Glas, I., Pohl, M.O. and Stertz, S. (2022) Phosphoproteomic Profiling of Influenza Virus Entry Reveals Infection-Triggered Filopodia Induction Counteracted by Dynamic Cortactin Phosphorylation. CellReports, 38, Article ID: 110306. https://doi.org/10.1016/j.celrep.2022.110306
[37]
Ge, M., Zhang, Y., Liu, Y., Liu, T. and Zeng, F. (2016) Propagation of Field Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus in MARC-145 Cells Is Promoted by Cell Apoptosis. VirusResearch, 213, 322-331. https://doi.org/10.1016/j.virusres.2015.12.023
[38]
Biondo, A. and Meneses, P.I. (2022) The Process of Filopodia Induction during HPV Infection. Viruses, 14, Article No. 1150. https://doi.org/10.3390/v14061150
[39]
Zhang, Y., Zhang, X., Li, Z., Zhao, W., Yang, H., Zhao, S., et al. (2023) Single Particle Tracking Reveals Sars-Cov-2 Regulating and Utilizing Dynamic Filopodia for Viral Invasion. ScienceBulletin, 68, 2210-2224. https://doi.org/10.1016/j.scib.2023.08.031
[40]
Jansens, R.J.J., Tishchenko, A. and Favoreel, H.W. (2020) Bridging the Gap: Virus Long-Distance Spread via Tunneling Nanotubes. JournalofVirology, 94, e02120-19. https://doi.org/10.1128/jvi.02120-19