Multidrug-resistant tuberculosis (MDR-TB) is a major public health problem worldwide, particularly in Eastern Europe, Russia, and Sub-Saharan Africa due to its prevalence, burden, treatment management difficulties, and socio-economic impacts. Burkina Faso is also facing the challenge of MDR-TB, which is a major public health threat in the country, given the trends in the prevalence and burden of the disease in recent years. The effective control of tuberculosis for its elimination needs to strengthen the prevention and control of MDR-TB. Therefore, assessment, efficient diagnostic tools, prevention of transmission, and effective management of treatment of MDR-TB are very important key measures. The aim of this study was to assess the prevalence of MDR-TB within new and previously treated tuberculosis cases in Burkina Faso. It is a descriptive cross-sectional study conducted from October 2022 to March 2023 at the National Reference Laboratory for Mycobacteria, Ouagadougou, Burkina Faso. Molecular diagnostic tests such as Xpert MTB/RIF and GenoType MTBDRPlus v1, a line probe assay (LPA), were used to detect Mycobacterium tuberculosis complex and to identify drug resistance-associated gene mutations to predict resistance. Among 500 suspected tuberculosis patients’ samples analyzed by the Xpert MTB/RIF assay, 169 (33.7%) patients were positive for Mycobacterium tuberculosis complex, including 100 (59.17%) new TB cases and 69 (40.83%) previously treated patients. Of these 169 TB-positive cases, the global prevalence of MDR-TB predicted based on Xpert MTB/RIF results was 24.26% (41/169). Considering new TB cases (n = 100) and previously treated TB cases (n = 69), the MDR-TB prevalence was very high in previously TB-treated cases, 40.58% (28/69) compared to new TB cases, 13% (13/100). Of the 41 rifampin-resistant cases (or MDR-TB cases based on prediction) detected by Xpert MTB/RIF, a subset of 35 samples (randomly selected) were analyzed by the MTBDRPlus V2 test and revealed 5. 71% (2/35) mono-resistant to rifampicin, 14.28% (5/35) mono-resistant to isoniazid and 74.29% (26/35) multi-resistant (rifampicin + isoniazid). The main genes associated-mutations conferring drug resistance to rifampicin and isoniazid determined by the GenoType MTBDRPlus V2 on the subset strains (N = 35) were D516V (20%), S531L (20%), H526D (15.29%) in rpoB gene for rifampicin resistance and S315T1 (80%), T8C (14.29%) in katG and inhA genes for isoniazid resistance. These mutations are the main ones described and
References
[1]
Iacobino, A., Fattorini, L. and Giannoni, F. (2020) Drug-Resistant Tuberculosis 2020: Where We Stand. AppliedSciences, 10, Article 2153. https://doi.org/10.3390/app10062153
[2]
Salari, N., Kanjoori, A.H., Hosseinian-Far, A., Hasheminezhad, R., Mansouri, K. and Mohammadi, M. (2023) Global Prevalence of Drug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. InfectiousDiseasesofPoverty, 12, Article No. 57. https://doi.org/10.1186/s40249-023-01107-x
[3]
Lv, H., Zhang, X., Zhang, X., Bai, J., You, S., Li, X., et al. (2024) Global Prevalence and Burden of Multidrug-Resistant Tuberculosis from 1990 to 2019. BMCInfectiousDiseases, 24, Article No. 243. https://doi.org/10.1186/s12879-024-09079-5
[4]
WHO (2023) Rapport mondial sur la tuberculose en 2023: Principaux résultats et messages. https://www.who.int/fr/publications/m/item/top-findings-and-messages-gtb2023
[5]
Bagcchi, S. (2023) Who’s Global Tuberculosis Report 2022. TheLancetMicrobe, 4, e20. https://doi.org/10.1016/s2666-5247(22)00359-7
[6]
Global Tuberculosis Report 2022. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
[7]
Dheda, K., Mirzayev, F., Cirillo, D.M., Udwadia, Z., Dooley, K.E., Chang, K., et al. (2024) Multidrug-Resistant Tuberculosis. NatureReviewsDiseasePrimers, 10, Article No. 22. https://doi.org/10.1038/s41572-024-00504-2
[8]
Moga, S., Bobosha, K., Fikadu, D., Zerihun, B., Diriba, G., Amare, M., et al. (2023) Diagnostic Performance of the Genotype MTBDRplus VER 2.0 Line Probe Assay for the Detection of Isoniazid Resistant Mycobacterium tuberculosis in Ethiopia. PLOSONE, 18, e0284737. https://doi.org/10.1371/journal.pone.0284737
[9]
WHO (2015) World TB Day. https://www.afro.who.int/world-tb-day-2015
[10]
Baya, B., Achenbach, C.J., Kone, B., Toloba, Y., Dabitao, D.K., Diarra, B., et al. (2019) Clinical Risk Factors Associated with Multidrug-Resistant Tuberculosis (MDR-TB) in Mali. InternationalJournalofInfectiousDiseases, 81, 149-155. https://doi.org/10.1016/j.ijid.2019.02.004
[11]
Xi, Y., Zhang, W., Qiao, R. and Tang, J. (2022) Risk Factors for Multidrug-Resistant Tuberculosis: A Worldwide Systematic Review and Meta-Analysis. PLOSONE, 17, e0270003. https://doi.org/10.1371/journal.pone.0270003
[12]
WHO (2008) Policy Statement: Molecular Line Probe Assays for Rapid Screening of Patients at Risk of Multidrug-Resistant Tuberculosis (MDR-TB). https://iris.who.int/bitstream/handle/10665/354240/9789240046665-eng.pdf
[13]
Gehre, F., Otu, J., Kendall, L., Forson, A., Kwara, A., Kudzawu, S., et al. (2016) The Emerging Threat of Pre-Extensively Drug-Resistant Tuberculosis in West Africa: Preparing for Large-Scale Tuberculosis Research and Drug Resistance Surveillance. BMCMedicine, 14, Article No. 160. https://doi.org/10.1186/s12916-016-0704-5
[14]
Kaboré, A., Hien, H., Sanou, A., Zingué, D., Daneau, G., Ganamé, Z., et al. (2014) Impact of Pre-Analytical Factors on Mycobacterium Cultures Contaminations Rates in Burkina Faso, West Africa. PanAfricanMedicalJournal, 19, Article 396. https://doi.org/10.11604/pamj.2014.19.396.5551
[15]
Kaboré, A., Tranchot-Diallo, J., Hien, H., Zouré, O., Zingué, D., Sanou, A., et al. (2019) Identification of Spore-Forming Bacteria Isolated from Contaminated Lowenstein Jensen Media and Effectiveness of Vancomycin to Reduce Mycobacterial Culture Contamination in Burkina-Faso. ScientificReports, 9, Article No. 7194. https://doi.org/10.1038/s41598-019-43662-0
[16]
Diandé, S., Badoum, G., Combary, A., Zombra, I., Saouadogo, T., Sawadogo, L.T., et al. (2019) Multidrug-Resistant Tuberculosis in Burkina Faso from 2006 to 2017: Results of National Surveys. EuropeanJournalofMicrobiologyandImmunology, 9, 23-28. https://doi.org/10.1556/1886.2018.00029
[17]
Ouédraogo, S.M., Sondo, K.A., Ouédraogo, A.R., Ouédraogo, G., Badoum, G., Boncoungou, K., et al. (2015) State of Tolerance of Multi-Resistant Tuberculosis Treatment (Burkina Faso). Mali Medical, 30, 39-45.
[18]
Chadli, S., Taqarort, N., El Houate, B. and Oulkheir, S. (2018) Epidemiological transition in Morocco (1960-2015). Médecine et Santé Tropicales, 28, 201-205. https://doi.org/10.1684/mst.2018.0800
[19]
Assob, J.C.N., Marcelin, N.N., Shey, N.D., Sonia, M., Jelil, A.N. and Kamga, H.L. (2013) Facteurs influençant la prévalence et le traitement de la tuberculose à Douala—Cameron. African Journal of Integrated Health, 2, 13-19.
[20]
Saleri, N., Badoum, G., Ouedraogo, M., Dembélé, S.M., Nacanabo, R., Bonkoungou, V., et al. (2010) Extensively Drug-Resistant Tuberculosis, Burkina Faso. EmergingInfectiousDiseases, 16, 840-842. https://doi.org/10.3201/eid1605.091262
[21]
Thumamo Pokam, B.D., Yeboah-Manu, D., Amiteye, D., Asare, P., Guemdjom, P.W., Yhiler, N.Y., et al. (2021) Molecular Epidemiology and Multidrug Resistance of Mycobacterium tuberculosis Complex from Pulmonary Tuberculosis Patients in the Eastern Region of Ghana. Heliyon, 7, e08152. https://doi.org/10.1016/j.heliyon.2021.e08152
[22]
Assob, J.C.N., Marcelin, N.N., Shey, N.D., Sonia, M., Jelil, A.N. and Kamga, H.L. (2013) Facteurs influençant la prévalence et le traitement de la tuberculose à Douala—Cameron. African Journal of Integrated Health, 2, 13-19.
[23]
Ouédraogo, S.M., Ouédraogo, A.R., Emile, B., Ouédraogo, G., Badoum, G., Nikiéma, K., Sondo, A., et al. (2014) Tuberculose multi-résistante à Bo-bo-Dioulasso: Aspects épidémiologiques, cliniques, radiographiques et évolutifs. RAFMI, 1, 1-44.
[24]
Chahboune, M., Barkaoui, M., Iderdar, Y., Alwachami, N., Mourajid, Y., Ifleh, M., et al. (2022) Profil épidémiologique, aspects diagnostiques et évolutifs des patients tuberculeux au centre de diagnostic de la tuberculose et des maladies respiratoires de Settat, Maroc. PanAfricanMedicalJournal, 42, Article 185. https://doi.org/10.11604/pamj.2022.42.185.35250
[25]
Sangaré, L., Diandé, S., Badoum, G., Dingtoumda, B. and Traoré, A.S. (2010) Anti-tuberculosis Drug Resistance in New and Previously Treated Pulmonary Tuberculosis Cases in Burkina Faso. The International Journal of Tuberculosis and Lung Disease, 14, 1424-1429.
[26]
Alagna, R., Combary, A., Tagliani, E., Sawadogo, L.T., Saouadogo, T., Diandé, S., et al. (2021) Is Deployement of Diagnostic Test Alone Enough? Comprehensive Package of Interventions to Strengthen TB Laboratory Network: Three Years of Experience in Burkina Faso. BMCInfectiousDiseases, 21, Article No. 346. https://doi.org/10.1186/s12879-021-06012-y
[27]
World Health Organization (2009) Countries with XDR-TB Confirmed Cases as of June 2008. https://iris.who.int/bitstream/handle/10665/44241/9789241598866_eng.pdf
[28]
CDC (2024) Clinical Overview of Drug-Resistant Tuberculosis Disease.
[29]
Miotto, P., Saleri, N., Dembelé, M., Ouedraogo, M., Badoum, G., Pinsi, G., et al. (2009) Molecular Detection of Rifampin and Isoniazid Resistance to Guide Chronic TB Patient Management in Burkina Faso. BMCInfectiousDiseases, 9, Article No. 142. https://doi.org/10.1186/1471-2334-9-142
[30]
Désire, I., Cyrille, B., Florencia, D., Souba, D., Albert, Y., Jean, B., et al. (2015) Diagnostic moléculaire du complexe Mycobacterium tuberculosis résistant à l’isoniazide et à la rifampicine au Burkina Faso. PanAfricanMedicalJournal, 21, Article 73. https://doi.org/10.11604/pamj.2015.21.73.5494
[31]
Traoré, A.N., Rikhotso, M.C., Mphaphuli, M.A., Patel, S.M., Mahamud, H.A., Kachienga, L.O., et al. (2023) Isoniazid and Rifampicin Resistance-Conferring Mutations in Mycobacterium tuberculosis Isolates from South Africa. Pathogens, 12, Article 1015. https://doi.org/10.3390/pathogens12081015