全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Agroecological Zoning Approach for Sustainable Agriculture in Burkina Faso, West Africa

DOI: 10.4236/acs.2025.152014, PP. 289-313

Keywords: Agroecological Zones, k-Means Clustering, Climate Variability, Agricultural Planning, Burkina Faso, West Africa

Full-Text   Cite this paper   Add to My Lib

Abstract:

Agriculture in West Africa faces multiple challenges, such as climate variability, soil degradation, and limited access to reliable agroecological information for agricultural planning. In this context, traditional zonation approaches have often relied solely on rainfall patterns, potentially overlooking critical biophysical factors that influence agricultural productivity. This study presents a comprehensive agroecological zoning approach for Burkina Faso as a case study in West Africa, using multiple biophysical variables and k-means clustering analysis. The methodology integrates climate data from ERA5 reanalysis and TAMSAT satellite precipitation estimates, soil characteristics from the Harmonized World Soil Database, and derived agroclimatic indices for Burkina Faso for the period 1991-2020. Twelve variables, including precipitation, temperature, consecutive dry and wet days, onset and length of growing season, aridity index, and soil water content, were analyzed at 0.25? × 0.25? spatial resolution. The k-means clustering analysis identified four distinct agroecological zones (AEZs) with unique biophysical characteristics in Burkina Faso. The northern zone (AEZ1) exhibits semi-arid conditions, with longer dry spells and higher temperatures, while the southwestern zone (AEZ4) shows more favorable agricultural conditions with higher rainfall and longer growing seasons. The transitional zones (AEZ2 and AEZ3) display intermediate characteristics reflecting gradual changes in agroclimatic conditions. Comparison with the well-known rainfall-based zonation using the V-measure framework yielded a score of 0.55, indicating that the new AEZs incorporate additional biophysical factors resulting in more nuanced spatial differentiation for Burkina Faso. The methodology demonstrates the value of integrating multiple data sources and analytical approaches to better understand agricultural potential and constraints. This zonation provides a scientific basis for agricultural planning and policy development in Burkina Faso, with potential applications in other regions in West Africa facing similar agricultural challenges.

References

[1]  Modi, R. (2018) The Role of Agriculture for Food Security and Poverty Reduction in Sub-Saharan Africa. In: Shaw, T.M., Mahrenbach, L.C., Modi, R., and Yi-Chong, X., Eds., The Palgrave Handbook of Contemporary International Political Economy, Palgrave Macmillan UK, 391-410.
https://doi.org/10.1057/978-1-137-45443-0_25
[2]  Douxchamps, S., Van Wijk, M.T., Silvestri, S., Moussa, A.S., Quiros, C., Ndour, N.Y.B., et al. (2015) Linking Agricultural Adaptation Strategies, Food Security and Vulnerability: Evidence from West Africa. Regional Environmental Change, 16, 1305-1317.
https://doi.org/10.1007/s10113-015-0838-6
[3]  McIntire, J.M. (2014) Transforming African Agriculture. Global Journal of Emerging Market Economies, 6, 145-179.
https://doi.org/10.1177/0974910114525697
[4]  Saghir, J. (2014) Global Challenges in Agriculture and the World Bank’s Response in Africa. Food and Energy Security, 3, 61-68.
https://doi.org/10.1002/fes3.43
[5]  Mbava, N., Mutema, M., Zengeni, R., Shimelis, H. and Chaplot, V. (2020) Factors Affecting Crop Water Use Efficiency: A Worldwide Meta-Analysis. Agricultural Water Management, 228, Article ID: 105878.
https://doi.org/10.1016/j.agwat.2019.105878
[6]  Nisa, K.U., Tarfeen, N., Nisa, Q. and Wani, S. (2023) Climate Change and Plant Nutrient Availability: Challenges and Assessment Strategies. In: Aftab, T. and Hakeem, K.R., Eds., Sustainable Plant Nutrition, Elsevier, 71-86.
https://doi.org/10.1016/b978-0-443-18675-2.00015-8
[7]  Mengistu, T. (2020) Relationship between Climate Change and Crop Productivity: Review Articles. International Journal of Research in Agronomy, 3, 55-61.
https://doi.org/10.33545/2618060x.2020.v3.i1a.74
[8]  Kurukulasuriya, P. and Mendelsohn, R.O. (2008) How Will Climate Change Shift Agro-Ecological Zones and Impact African Agriculture? Social Science Research Network, Report No. 4717, 31.
[9]  Roudier, P., Sultan, B., Quirion, P. and Berg, A. (2011) The Impact of Future Climate Change on West African Crop Yields: What Does the Recent Literature Say? Global Environmental Change, 21, 1073-1083.
https://doi.org/10.1016/j.gloenvcha.2011.04.007
[10]  Waha, K., Müller, C. and Rolinski, S. (2013) Separate and Combined Effects of Temperature and Precipitation Change on Maize Yields in Sub-Saharan Africa for Mid-to Late-21st Century. Global and Planetary Change, 106, 1-12.
https://doi.org/10.1016/j.gloplacha.2013.02.009
[11]  Chen, Z., Galli, M. and Gallavotti, A. (2022) Mechanisms of Temperature-Regulated Growth and Thermotolerance in Crop Species. Current Opinion in Plant Biology, 65, Article ID: 102134.
https://doi.org/10.1016/j.pbi.2021.102134
[12]  Hatfield, J.L. and Prueger, J.H. (2015) Temperature Extremes: Effect on Plant Growth and Development. Weather and Climate Extremes, 10, 4-10.
https://doi.org/10.1016/j.wace.2015.08.001
[13]  Joseph, J.E., Akinseye, F.M., Worou, O.N., Faye, A., Konte, O., Whitbread, A.M., et al. (2023) Assessment of the Relations between Crop Yield Variability and the Onset and Intensity of the West African Monsoon. Agricultural and Forest Meteorology, 333, Article ID: 109431.
https://doi.org/10.1016/j.agrformet.2023.109431
[14]  Laux, P., Kunstmann, H. and Bárdossy, A. (2008) Predicting the Regional Onset of the Rainy Season in West Africa. International Journal of Climatology, 28, 329-342.
https://doi.org/10.1002/joc.1542
[15]  Waongo, M., Laux, P., Traoré, S.B., Sanon, M. and Kunstmann, H. (2014) A Crop Model and Fuzzy Rule Based Approach for Optimizing Maize Planting Dates in Burkina Faso, West Africa. Journal of Applied Meteorology and Climatology, 53, 598-613.
https://doi.org/10.1175/jamc-d-13-0116.1
[16]  Ngetich, K.F., Mucheru-Muna, M., Mugwe, J.N., Shisanya, C.A., Diels, J. and Mugendi, D.N. (2014) Length of Growing Season, Rainfall Temporal Distribution, Onset and Cessation Dates in the Kenyan Highlands. Agricultural and Forest Meteorology, 188, 24-32.
https://doi.org/10.1016/j.agrformet.2013.12.011
[17]  Gregory, P.J., Simmonds, L.P. and Pilbeam, C.J. (2000) Soil Type, Climatic Regime, and the Response of Water Use Efficiency to Crop Management. Agronomy Journal, 92, 814-820.
https://doi.org/10.2134/agronj2000.925814x
[18]  Saxton, K.E., Rawls, W.J., Romberger, J.S. and Papendick, R.I. (1986) Estimating Generalized Soil-Water Characteristics from Texture. Soil Science Society of America Journal, 50, 1031-1036.
https://doi.org/10.2136/sssaj1986.03615995005000040039x
[19]  Altieri, M.A. (2002) Agroecology: The Science of Natural Resource Management for Poor Farmers in Marginal Environments. Agriculture, Ecosystems & Environment, 93, 1-24.
https://doi.org/10.1016/s0167-8809(02)00085-3
[20]  Gliessman, S. (2018) Defining Agroecology. Agroecology and Sustainable Food Systems, 42, 599-600.
https://doi.org/10.1080/21683565.2018.1432329
[21]  Fischer, G., van Velthuizen, H.T. and Nachtergaele, F.O. (2000 Nov) Global Agro-Ecological Zones Assessment: Methodology and Results. IIASA, Report No. IR-00-064, 338.
[22]  Pal, D.K., Mandal, D.K., Bhattacharyya, T., Mandal, C. and Sarkar, D. (2009) Revisiting the Agro-Ecological Zones for Crop Evaluation. Indian Journal of Genetics and Plant Breeding, 69, 315-318.
[23]  Seo, S.N. (2014) Evaluation of the Agro-Ecological Zone Methods for the Study of Climate Change with Micro Farming Decisions in Sub-Saharan Africa. European Journal of Agronomy, 52, 157-165.
https://doi.org/10.1016/j.eja.2013.09.014
[24]  Ahmad, L., Habib Kanth, R., Parvaze, S. and Sheraz Mahdi, S. (2017) Agro-Climatic and Agro-Ecological Zones of India. In: Ahmad, L., Habib Kanth, R., Parvaze, S. and Sheraz Mahdi, S., Eds., Experimental Agrometeorology: A Practical Manual, Springer International Publishing, 99-118.
https://doi.org/10.1007/978-3-319-69185-5_15
[25]  Kidd, C., Levizzani, V. and Bauer, P. (2009) A Review of Satellite Meteorology and Climatology at the Start of the Twenty-First Century. Progress in Physical Geography: Earth and Environment, 33, 474-489.
https://doi.org/10.1177/0309133309346647
[26]  Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011) The Era-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Quarterly Journal of the Royal Meteorological Society, 137, 553-597.
https://doi.org/10.1002/qj.828
[27]  Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al. (2019) Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature, 566, 195-204.
https://doi.org/10.1038/s41586-019-0912-1
[28]  Maidment, R.I., Grimes, D., Black, E., Tarnavsky, E., Young, M., Greatrex, H., et al. (2017) A New, Long-Term Daily Satellite-Based Rainfall Dataset for Operational Monitoring in Africa. Scientific Data, 4, Article No. 170063.
https://doi.org/10.1038/sdata.2017.63
[29]  Washington, R., Harrison, M., Conway, D., Black, E., Challinor, A., Grimes, D., et al. (2006) African Climate Change: Taking the Shorter Route. Bulletin of the American Meteorological Society, 87, 1355-1366.
https://doi.org/10.1175/bams-87-10-1355
[30]  Gbode, I.E., Babalola, T.E., Diro, G.T. and Intsiful, J.D. (2023) Assessment of ERA5 and Era-Interim in Reproducing Mean and Extreme Climates over West Africa. Advances in Atmospheric Sciences, 40, 570-586.
https://doi.org/10.1007/s00376-022-2161-8
[31]  Sivakumar, M.V.K. and Gnoumou, F. (1987) Agroclimatology of West Africa: Burkina Faso. International Crops Research Institute for the Semi-Arid Tropics.
[32]  Zidouemba, P. (2017) Economy-Wide Implications of Climate Change in Burkina Faso. Economics Bulletin, 37, 2797-808.
[33]  Tappan, G.G., Cushing, W.M., Cotillon, S.E., Hutchinson, J.A., Pengra, B., Alfari, I. et al. (2016) Landscapes of West Africa: A Window on a Changing World. USGS, 82-89.
https://doi.org/10.5066/F7N014QZ
[34]  Diao, X., Hazell, P., Danielle, R. and James, T. (2007) The Role of Agriculture in Development: Implications for Sub-Saharan Africa. International Food Policy Research Institute.
[35]  Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., et al. (2021) The ERA5 Global Reanalysis: Preliminary Extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147, 4186-4227.
https://doi.org/10.1002/qj.4174
[36]  Rolle, M., Tamea, S. and Claps, P. (2022) Climate-Driven Trends in Agricultural Water Requirement: An ERA5-Based Assessment at Daily Scale over 50 Years. Environmental Research Letters, 17, Article ID: 044017.
https://doi.org/10.1088/1748-9326/ac57e4
[37]  Rolle, M., Tamea, S. and Claps, P. (2021) ERA5-Based Global Assessment of Irrigation Requirement and Validation. PLOS ONE, 16, e0250979.
https://doi.org/10.1371/journal.pone.0250979
[38]  Zhang, R., Li, L., Zhang, Y., Huang, F., Li, J., Liu, W., et al. (2021) Assessment of Agricultural Drought Using Soil Water Deficit Index Based on ERA5-Land Soil Moisture Data in Four Southern Provinces of China. Agriculture, 11, Article 411.
https://doi.org/10.3390/agriculture11050411
[39]  Asfaw, D., Black, E., Brown, M., Nicklin, K.J., Otu-Larbi, F., Pinnington, E., et al. (2018) TAMSAT-ALERT V1: A New Framework for Agricultural Decision Support. Geoscientific Model Development, 11, 2353-2371.
https://doi.org/10.5194/gmd-11-2353-2018
[40]  Dembélé, M. and Zwart, S.J. (2016) Evaluation and Comparison of Satellite-Based Rainfall Products in Burkina Faso, West Africa. International Journal of Remote Sensing, 37, 3995-4014.
https://doi.org/10.1080/01431161.2016.1207258
[41]  FAO and IIASA (2023) Harmonized World Soil Database Version 2.0. FAO, International Institute for Applied Systems Analysis (IIASA).
https://doi.org/10.4060/cc3823en
[42]  Moreno-Maroto, J.M. and Alonso-Azcárate, J. (2022) Evaluation of the USDA Soil Texture Triangle through Atterberg Limits and an Alternative Classification System. Applied Clay Science, 229, Article ID: 106689.
https://doi.org/10.1016/j.clay.2022.106689
[43]  Dalezios, N.R., Dercas, N., Faraslis, I.N., Spiliotopoulos, M., Sidiropoulos, P., Sakelariou, S., et al. (2023) Irrigation and Agrometeorology: Innovative Remote Sensing Applications in Crop Monitoring. In: Eslamian, S. and Eslamian, F., Eds., Handbook of Irrigation Hydrology and Management, CRC Press, 243-259.
https://doi.org/10.1201/9780429290114-15
[44]  Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998) Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization.
[45]  Laux, P., Jäckel, G., Tingem, R.M. and Kunstmann, H. (2010) Impact of Climate Change on Agricultural Productivity under Rainfed Conditions in Cameroon—A Method to Improve Attainable Crop Yields by Planting Date Adaptations. Agricultural and Forest Meteorology, 150, 1258-1271.
https://doi.org/10.1016/j.agrformet.2010.05.008
[46]  Ibrahim, B., Polcher, J., Karambiri, H. and Rockel, B. (2012) Characterization of the Rainy Season in Burkina Faso and It’s Representation by Regional Climate Models. Climate Dynamics, 39, 1287-1302.
https://doi.org/10.1007/s00382-011-1276-x
[47]  Ibrahim, B., Waongo, M., Sidibe, M., Sanfo, S. and Barry, B. (2022) Agroclimatological Characteristics of Rainy Seasons in Southwestern Burkina Faso during the 1970-2013 Period. Atmospheric and Climate Sciences, 12, 330-357.
https://doi.org/10.4236/acs.2022.122021
[48]  Tian, Y., Peters‐Lidard, C.D., Eylander, J.B., Joyce, R.J., Huffman, G.J., Adler, R.F., et al. (2009) Component Analysis of Errors in Satellite-Based Precipitation Estimates. Journal of Geophysical Research: Atmospheres, 114, D24101.
https://doi.org/10.1029/2009jd011949
[49]  Frere, M. and Popov, G. (1979) Agrometeorological Crop Monitoring and Forecasting. FAO.
[50]  Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., Peterson, T.C., et al. (2011) Indices for Monitoring Changes in Extremes Based on Daily Temperature and Precipitation Data. WIREs Climate Change, 2, 851-870.
https://doi.org/10.1002/wcc.147
[51]  Boschetto, R.G., Mohamed, R.M. and Arrigotti, J. (2010) Vulnerability to Desertification in a Sub-Saharan Region: A First Local Assessment in Five Villages of Southern Region of Malawi. Italian Journal of Agronomy, 5, 91-101.
https://doi.org/10.4081/ija.2010.s3.91
[52]  Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E. (2009) Aquacrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal, 101, 426-437.
https://doi.org/10.2134/agronj2008.0139s
[53]  Hartigan, J.A. and Wong, M.A. (1979) Algorithm as 136: A K-Means Clustering Algorithm. Applied Statistics, 28, 100-108.
https://doi.org/10.2307/2346830
[54]  Sinaga, K.P. and Yang, M. (2020) Unsupervised K-Means Clustering Algorithm. IEEE Access, 8, 80716-80727.
https://doi.org/10.1109/access.2020.2988796
[55]  Li, Y. and Wu, H. (2012) A Clustering Method Based on K-Means Algorithm. Physics Procedia, 25, 1104-1109.
https://doi.org/10.1016/j.phpro.2012.03.206
[56]  Bock, H. (2007) Clustering Methods: A History of K-Means Algorithms. In: Bri-to, P., Cucumel, G., Bertrand, P. and de Carvalho, F., Eds., Studies in Classification, Data Analysis, and Knowledge Organization, Springer, 161-172.
https://doi.org/10.1007/978-3-540-73560-1_15
[57]  Humaira, H. and Rasyidah, R. (2020) Determining the Appropiate Cluster Number Using Elbow Method for K-Means Algorithm. Proceedings of the Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018, Padang, 24-25 January 2018.
https://doi.org/10.4108/eai.24-1-2018.2292388
[58]  Celebi, M.E., Kingravi, H.A. and Vela, P.A. (2013) A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm. Expert Systems with Applications, 40, 200-210.
https://doi.org/10.1016/j.eswa.2012.07.021
[59]  Ihaka, R. and Gentleman, R. (1996) R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5, 299-314.
https://doi.org/10.1080/10618600.1996.10474713
[60]  Hijmans, R.J. (2020) Terra: Spatial Data Analysis. CRAN: Contributed Packages, The R Foundation.
https://doi.org/10.32614/cran.package.terra
[61]  Ogihara, M. and Bonnell, J. (2023) Exploring Data Science with R and the Tidyverse: A Concise Introduction. Chapman and Hall/CRC.
https://doi.org/10.1201/9781003320845
[62]  Waongo, M., Garba, J.N., Diasso, U.J., Sawadogo, W., Sawadogo, W.L. and Daho, T. (2024) A Merging Approach for Improving the Quality of Gridded Precipitation Datasets over Burkina Faso. Climate, 12, Article 226.
https://doi.org/10.3390/cli12120226
[63]  Nowosad, J. and Stepinski, T.F. (2018) Spatial Association between Regionalizations Using the Information-Theoretical v-Measure. International Journal of Geographical Information Science, 32, 2386-2401.
https://doi.org/10.1080/13658816.2018.1511794

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133