In order to introduce left and right truncated versions of the modified lognormal with a power-law distribution, we derive its probability density function, its distribution function, its average value, its second moment of the origin, its variance, how to randomly generate its values, the maximum likelihood and the nonlinear least squares estimators for its three unknown parameters. It is then applied to five clusters of stars, to the mass function for stars, and to one catalog for the masses of the galaxies.
References
[1]
Pearson, K. (1902) V. on the Methematical Theory of Errors of Judgement, with Special Reference to the Personal Equation. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 198, 235-299.
[2]
Zaninetti, L. (2022) New Probability Distributions in Astrophysics: IX. Truncation for Exponential, Half Gaussian and Sech-Square Distributions with Application to the Galactic Height. International Journal of Astronomy and Astrophysics, 12, 328-346. https://doi.org/10.4236/ijaa.2022.124019
[3]
Schechter, P. (1976) An Analytic Expression for the Luminosity Function for Galaxies. The Astrophysical Journal, 203, 297-306. https://doi.org/10.1086/154079
[4]
Zaninetti, L. (2010) The Luminosity Function of Galaxies as Modelled by the Generalized Gamma Distribution. Acta Physica Polonica B, 41, 729-751.
[5]
Zaninetti, L. (2019) New Probability Distributions in Astrophysics: I. The Truncated Generalized Gamma. International Journal of Astronomy and Astrophysics, 9, 393-410. https://doi.org/10.4236/ijaa.2019.94027
[6]
Galton, F. (1879) XII. The Geometric Mean, in Vital and Social Statistics. Proceedings of the Royal Society of London, 29, 365-367.
[7]
McAlister, D. (1879) XIII. The Law of the Geometric Mean. Proceedings of the Royal Society of London, 29, 367-376.
[8]
Cobb, C.W. and Douglas, P.H. (1928) A Theory of Production. American Economic Association, 18, 139-165.
[9]
Gibrat, R. (1931) Les Inégalites Économiques. Sirey.
[10]
Nydell, S. (1919) The Mean Errors of the Characteristics in Logarithmic-Normal Distributions. Scandinavian Actuarial Journal, 1919, 134-144. https://doi.org/10.1080/03461238.1919.10414805
[11]
Scargle, J.D. (2020) Studies in Astronomical Time-Series Analysis. VII. An Enquiry Concerning Nonlinearity, the Rms-Mean Flux Relation, and Lognormal Flux Distributions. The Astrophysical Journal, 895, Article 90. https://doi.org/10.3847/1538-4357/ab8d38
[12]
Shah, Z., Misra, R. and Sinha, A. (2020) On the Determination of Lognormal Flux Distributions for Astrophysical Systems. Monthly Notices of the Royal Astronomical Society, 496, 3348-3357. https://doi.org/10.1093/mnras/staa1746
[13]
Banda-Barragán, W.E., Brüggen, M., Federrath, C., Wagner, A.Y., Scannapieco, E. and Cottle, J. (2020) Shock-Multicloud Interactions in Galactic Outflows—I. Cloud Layers with Lognormal Density Distributions. Monthly Notices of the Royal Astronomical Society, 499, 2173-2195. https://doi.org/10.1093/mnras/staa2904
[14]
Nagovitsyn, Y.A. and Pevtsov, A.A. (2021) Bi-Lognormal Distribution of Sunspot Group Areas. The Astrophysical Journal, 906, Article 27. https://doi.org/10.3847/1538-4357/abc82d
[15]
Wang, N., Yi, T., Wang, L., Mao, L., Pu, Z., Ning, G., et al. (2023) Comprehensive Study of the Blazars from Fermi-Lat LCR: The Log-Normal Flux Distribution and Linear Rms-Flux Relation. Research in Astronomy and Astrophysics, 23, Article 115011. https://doi.org/10.1088/1674-4527/ace9b1
[16]
Evans, M., Hastings, N. and Peacock, B. (2000) Statistical Distributions. 3rd Edition, John Wiley & Sons Inc.
[17]
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions. Vol. 1. 2nd Edition, Wiley.
[18]
Zaninetti, L. (2017) A Left and Right Truncated Lognormal Distribution for the Stars. Advances in Astrophysics, 2, 197-213. https://doi.org/10.22606/adap.2017.23005
[19]
Reed, W.J. and Jorgensen, M. (2004) The Double Pareto-Lognormal Distribution—A New Parametric Model for Size Distributions. Communications in Statistics-Theory and Methods, 33, 1733-1753. https://doi.org/10.1081/sta-120037438
[20]
Basu, S., Gil, M. and Auddy, S. (2015) The MLP Distribution: A Modified Lognormal Power-Law Model for the Stellar Initial Mass Function. Monthly Notices of the Royal Astronomical Society, 449, 2413-2420. https://doi.org/10.1093/mnras/stv445
[21]
Howard, R.M. (2022) Arbitrarily Accurate Analytical Approximations for the Error Function. Mathematical and Computational Applications, 27, Article 14. https://doi.org/10.3390/mca27010014
[22]
Vazquez-Leal, H., Castaneda-Sheissa, R., Filobello-Nino, U., Sarmiento-Reyes, A. and Sanchez Orea, J. (2012) High Accurate Simple Approximation of Normal Distribution Integral. Mathematical Problems in Engineering, 2012, Article ID: 124029. https://doi.org/10.1155/2012/124029
[23]
Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press.
[24]
Kolmogoroff, A. (1941) Confidence Limits for an Unknown Distribution Function. The Annals of Mathematical Statistics, 12, 461-463. https://doi.org/10.1214/aoms/1177731684
[25]
Smirnov, N. (1948) Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19, 279-281. https://doi.org/10.1214/aoms/1177730256
[26]
Massey, F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46, 68-78. https://doi.org/10.2307/2280095
[27]
Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., Irwin, M., et al. (2008) The Monitor Project: Rotation of Low-Mass Stars in NGC 2362—Testing the Disc Regulation Paradigm at 5 Myr. Monthly Notices of the Royal Astronomical Society, 384, 675-686. https://doi.org/10.1111/j.1365-2966.2007.12725.x
[28]
Oliveira, J.M., Jeffries, R.D. and van Loon, J.T. (2009) The Low-Mass Initial Mass Function in the Young Cluster NGC 6611. Monthly Notices of the Royal Astronomical Society, 392, 1034-1050. https://doi.org/10.1111/j.1365-2966.2008.14140.x
[29]
Prisinzano, L., Damiani, F., Micela, G., Jeffries, R.D., Franciosini, E., Sacco, G.G., et al. (2016) The Gaia-ESO Survey: Membership and Initial Mass Function of The γ Velorum Cluster. Astronomy & Astrophysics, 589, A70. https://doi.org/10.1051/0004-6361/201527875
[30]
Panwar, N., Pandey, A.K., Samal, M.R., Battinelli, P., Ogura, K., Ojha, D.K., et al. (2018) Young Cluster Berkeley 59: Properties, Evolution, and Star Formation. The Astronomical Journal, 155, Article 44. https://doi.org/10.3847/1538-3881/aa9f1b
[31]
Brandner, W., Calissendorff, P. and Kopytova, T. (2023) Astrophysical Properties of 600 Bona Fide Single Stars in the Hyades Open Cluster. The Astronomical Journal, 165, Article 108. https://doi.org/10.3847/1538-3881/acb208
[32]
Lelli, F., McGaugh, S.S. and Schombert, J.M. (2016) SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. The Astronomical Journal, 152, Article 157. https://doi.org/10.3847/0004-6256/152/6/157
[33]
Kroupa, P., Weidner, C., Pflamm-Altenburg, J., Thies, I., Dabringhausen, J., Marks, M., et al. (2013) The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations. In: Oswalt, T.D. and Gilmore, G., Eds., Planets, Stars and Stellar Systems, Springer, 115-242. https://doi.org/10.1007/978-94-007-5612-0_4
[34]
Zaninetti, L. (2013) The Initial Mass Function Modeled by a Left Truncated Beta Distribution. The Astrophysical Journal, 765, Article 128. https://doi.org/10.1088/0004-637x/765/2/128
[35]
Chabrier, G. (2005) The Initial Mass Function: From Salpeter 1955 to 2005. In: Corbelli, E., Palla, F., Zinnecker, H. Eds., The Initial Mass Function 50 Years Later, Springer, 41-50. https://doi.org/10.1007/978-1-4020-3407-7_5
[36]
Zaninetti, L. (2024) New Probability Distributions in Astrophysics: XIII. Truncation for the Benini Distribution. International Journal of Astronomy and Astrophysics, 14, 203-219. https://doi.org/10.4236/ijaa.2024.143013
[37]
Zaninetti, L. (2024) New Probability Distributions in Astrophysics: XII. Truncation for the Gompertz Distribution. International Journal of Astronomy and Astrophysics, 14, 101-119. https://doi.org/10.4236/ijaa.2024.142007
[38]
Zaninetti, L. (2023) New Probability Distributions in Astrophysics: XI. Left Truncation for the Topp-Leone Distribution. International Journal of Astronomy and Astrophysics, 13, 154-165. https://doi.org/10.4236/ijaa.2023.133009
[39]
Zaninetti, L. (2022) New Probability Distributions in Astrophysics: X. Truncation and Mass-Luminosity Relationship for the Frèchet Distribution. International Journal of Astronomy and Astrophysics, 12, 347-362. https://doi.org/10.4236/ijaa.2022.124020
[40]
Zaninetti, L. (2021) New Probability Distributions in Astrophysics: V. The Truncated Weibull Distribution. International Journal of Astronomy and Astrophysics, 11, 133-149. https://doi.org/10.4236/ijaa.2021.111008
[41]
Zaninetti, L. (2021) New Probability Distributions in Astrophysics: VI. The Truncated Sujatha Distribution. International Journal of Astronomy and Astrophysics, 11, 517-529. https://doi.org/10.4236/ijaa.2021.114028
[42]
Zaninetti, L. (2020) New Probability Distributions in Astrophysics: II. The Generalized and Double Truncated Lindley. International Journal of Astronomy and Astrophysics, 10, 39-55. https://doi.org/10.4236/ijaa.2020.101004
[43]
Zaninetti, L. (2013) A Right and Left Truncated Gamma Distribution with Application to the Stars. Advanced Studies in Theoretical Physics, 7, 1139-1147. https://doi.org/10.12988/astp.2013.310125
[44]
Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press.