全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exploring the Medical Applications of Nanocellulose: A Sustainable Review

DOI: 10.4236/msce.2025.131005, PP. 61-86

Keywords: Drug Delivery, Modification, Nanocellulose, Tissue Engineering, Wound Healing

Full-Text   Cite this paper   Add to My Lib

Abstract:

The interesting nanomaterials that have developed quickly in the latest years and have a lot of significance in the biomedical industry are nanocelluloses (NCs). This tendency is in line with the growing need for maintainable materials that will enhance wellbeing and prolong human life, as well as the need to stay up to date with medical technological advancements. Based on the most desirable characteristics of nanocellulose, a variety of novel, useful materials with a broad scope of biomedical applications have been developed. NCs-based materials have garnered a lot of interest in medical applications due to their obtainability, biodegradability, affordability, biocompatibility, sustainability, exceptional mechanical qualities and low cytotoxicity. For the year 2022, the medical field more specifically, biosensors, drug delivery, wound dressing, tissue engineering, and medical implants, represents more than 60% of all the disciplines in which NCs are utilized. Domains, including wrapping, purification of air, ultrafiltration, elimination of pollutants, acoustics, account for around 40% of the entire number of other applications [1]. The overview of nanocellulose for medical applications is briefly reviewed in the first section of this paper. The second section explains how nanocelluloses can be modified for use in medicine. Chemically altering nanocellulose to create hydrogels, nanogels, and nanocomposites, as well as altering the surface for use in biomedicine. The review also discusses the benefits of nanocellulose over the existing technologies in the biomedical field. The final section discusses how nanocelluloses are used in the biomedical field.

References

[1]  Ghilan, A., Nicu, R., Ciolacu, D.E. and Ciolacu, F. (2023) Insight into the Latest Medical Applications of Nanocellulose. Materials, 16, Article No. 4447.
https://doi.org/10.3390/ma16124447
[2]  Jorfi, M. and Foster, E.J. (2014) Recent Advances in Nanocellulose for Biomedical Applications. Journal of Applied Polymer Science, 132, Article No. 41719.
https://doi.org/10.1002/app.41719
[3]  Halib, N., Perrone, F., Cemazar, M., Dapas, B., Farra, R., Abrami, M., et al. (2017) Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. Materials, 10, Article No. 977.
https://doi.org/10.3390/ma10080977
[4]  Qin, C., Soykeabkaew, N., Xiuyuan, N. and Peijs, T. (2008) The Effect of Fibre Volume Fraction and Mercerization on the Properties of All-Cellulose Composites. Carbohydrate Polymers, 71, 458-467.
https://doi.org/10.1016/j.carbpol.2007.06.019
[5]  Nehra, P. and Chauhan, R.P. (2020) Eco-Friendly Nanocellulose and Its Biomedical Applications: Current Status and Future Prospect. Journal of Biomaterials Science, Polymer Edition, 32, 112-149.
https://doi.org/10.1080/09205063.2020.1817706
[6]  Metreveli, G., Wågberg, L., Emmoth, E., Belák, S., Strømme, M. and Mihranyan, A. (2014) A Size‐Exclusion Nanocellulose Filter Paper for Virus Removal. Advanced Healthcare Materials, 3, 1546-1550.
https://doi.org/10.1002/adhm.201300641
[7]  Li, J., Cha, R., Mou, K., Zhao, X., Long, K., Luo, H., et al. (2018) Nanocellulose‐Based Antibacterial Materials. Advanced Healthcare Materials, 7, Article ID: 1800334.
https://doi.org/10.1002/adhm.201800334
[8]  Norrrahim, M.N.F., Nurazzi, N.M., Jenol, M.A., Farid, M.A.A., Janudin, N., Ujang, F.A., et al. (2021) Emerging Development of Nanocellulose as an Antimicrobial Material: An Overview. Materials Advances, 2, 3538-3551.
https://doi.org/10.1039/d1ma00116g
[9]  Lin, N. and Dufresne, A. (2014) Nanocellulose in Biomedicine: Current Status and Future Prospect. European Polymer Journal, 59, 302-325.
https://doi.org/10.1016/j.eurpolymj.2014.07.025
[10]  Bansal, V., Sharma, P.K., Sharma, N., Pal, O.P. and Malviya, R. (2011) Applications of Chitosan and Chitosan Derivatives in Drug Delivery. Advances in Biological Regulation, 5, 28-37.
[11]  Salas, C., Nypelö, T., Rodriguez-Abreu, C., Carrillo, C. and Rojas, O.J. (2014) Nanocellulose Properties and Applications in Colloids and Interfaces. Current Opinion in Colloid & Interface Science, 19, 383-396.
https://doi.org/10.1016/j.cocis.2014.10.003
[12]  Petersen, N. and Gatenholm, P. (2011) Bacterial Cellulose-Based Materials and Medical Devices: Current State and Perspectives. Applied Microbiology and Biotechnology, 91, 1277-1286.
https://doi.org/10.1007/s00253-011-3432-y
[13]  Alvarado, D.R., Argyropoulos, D.S., Scholle, F., Peddinti, B.S.T. and Ghiladi, R.A. (2019) A Facile Strategy for Photoactive Nanocellulose-Based Antimicrobial Materials. Green Chemistry, 21, 3424-3435.
https://doi.org/10.1039/c9gc00551j
[14]  Islam, M.T., Alam, M.M. and Zoccola, M. (2013) Review on Modification of Nanocellulose for Application in Composites. International Journal of Innovative Research in Science, Engineering and Technology, 2, 5444-5451.
[15]  Habibi, Y., Lucia, L.A. and Rojas, O.J. (2010) Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 110, 3479-3500.
https://doi.org/10.1021/cr900339w
[16]  Li, J., Zhang, L., Peng, F., Bian, J., Yuan, T., Xu, F., et al. (2009) Microwave-Assisted Solvent-Free Acetylation of Cellulose with Acetic Anhydride in the Presence of Iodine as a Catalyst. Molecules, 14, 3551-3566.
https://doi.org/10.3390/molecules14093551
[17]  Endes, C., Camarero-Espinosa, S., Mueller, S., Foster, E.J., Petri-Fink, A., Rothen-Rutishauser, B., et al. (2016) A Critical Review of the Current Knowledge Regarding the Biological Impact of Nanocellulose. Journal of Nanobiotechnology, 14, Article No. 78.
https://doi.org/10.1186/s12951-016-0230-9
[18]  Zhang, X., Fang, Y. and Chen, W. (2013) Preparation of Silver/Bacterial Cellulose Composite Membrane and Study on Its Antimicrobial Activity. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43, 907-913.
https://doi.org/10.1080/15533174.2012.750674
[19]  Pal, S., Nisi, R., Stoppa, M. and Licciulli, A. (2017) Silver-Functionalized Bacterial Cellulose as Antibacterial Membrane for Wound-Healing Applications. ACS Omega, 2, 3632-3639.
https://doi.org/10.1021/acsomega.7b00442
[20]  Katepetch, C., Rujiravanit, R. and Tamura, H. (2013) Formation of Nanocrystalline ZnO Particles into Bacterial Cellulose Pellicle by Ultrasonic-Assisted in Situ Synthesis. Cellulose, 20, 1275-1292.
https://doi.org/10.1007/s10570-013-9892-8
[21]  Samyn, P., Meftahi, A., Geravand, S.A., Heravi, M.E.M., Najarzadeh, H., Sabery, M.S.K., et al. (2023) Opportunities for Bacterial Nanocellulose in Biomedical Applications: Review on Biosynthesis, Modification and Challenges. International Journal of Biological Macromolecules, 231, Article ID: 123316.
https://doi.org/10.1016/j.ijbiomac.2023.123316
[22]  Jacob, S., Nair, A.B., Shah, J., Sreeharsha, N., Gupta, S. and Shinu, P. (2021) Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics, 13, Article No. 357.
https://doi.org/10.3390/pharmaceutics13030357
[23]  Nicu, R., Ciolacu, F. and Ciolacu, D.E. (2021) Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Pharmaceutics, 13, Article No. 1125.
https://doi.org/10.3390/pharmaceutics13081125
[24]  De Lima, C.S.A., et al. (2020) An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications. Pharmaceutics, 12, 970.
[25]  Xu, F., Zhu, J., Lin, L., Zhang, C., Sun, W., Fan, Y., et al. (2020) Multifunctional PVCL Nanogels with Redox-Responsiveness Enable Enhanced MR Imaging and Ultrasound-Promoted Tumor Chemotherapy. Theranostics, 10, 4349-4358.
https://doi.org/10.7150/thno.43402
[26]  Sivaram, A.J., Rajitha, P., Maya, S., Jayakumar, R. and Sabitha, M. (2015) Nanogels for Delivery, Imaging and Therapy. WIREs Nanomedicine and Nanobiotechnology, 7, 509-533.
https://doi.org/10.1002/wnan.1328
[27]  Ferreira, S.A., Gama, F.M. and Vilanova, M. (2013) Polymeric Nanogels as Vaccine Delivery Systems. Nanomedicine: Nanotechnology, Biology and Medicine, 9, 159-173.
https://doi.org/10.1016/j.nano.2012.06.001
[28]  Yan, M., Ge, J., Liu, Z. and Ouyang, P. (2006) Encapsulation of Single Enzyme in Nanogel with Enhanced Biocatalytic Activity and Stability. Journal of the American Chemical Society, 128, 11008-11009.
https://doi.org/10.1021/ja064126t
[29]  Chou, H., Larsson, M., Hsiao, M., Chen, Y., Röding, M., Nydén, M., et al. (2016) Injectable Insulin-Lysozyme-Loaded Nanogels with Enzymatically-Controlled Degradation and Release for Basal Insulin Treatment: In Vitro Characterization and in Vivo Observation. Journal of Controlled Release, 224, 33-42.
https://doi.org/10.1016/j.jconrel.2015.12.036
[30]  Akram, M. and Hussain, R. (2017) Nanohydrogels: History, Development, and Applications in Drug Delivery. In: Nanocellulose and Nanohydrogel Matrices, Wiley, 297-330.
[31]  Lewis, L., Derakhshandeh, M., Hatzikiriakos, S.G., Hamad, W.Y. and MacLachlan, M.J. (2016) Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions. Biomacromolecules, 17, 2747-2754.
https://doi.org/10.1021/acs.biomac.6b00906
[32]  Sanandiya, N.D., Vasudevan, J., Das, R., Lim, C.T. and Fernandez, J.G. (2019) Stimuli-Responsive Injectable Cellulose Thixogel for Cell Encapsulation. International Journal of Biological Macromolecules, 130, 1009-1017.
https://doi.org/10.1016/j.ijbiomac.2019.02.135
[33]  Talantikite, M., Beury, N., Moreau, C. and Cathala, B. (2019) Arabinoxylan/Cellulose Nanocrystal Hydrogels with Tunable Mechanical Properties. Langmuir, 35, 13427-13434.
https://doi.org/10.1021/acs.langmuir.9b02080
[34]  Sabet, S.S., et al. (2013) Shear Rheology of Cellulose Nanocrystal (CNC) Aqueous Suspensions. Ultrasound.
[35]  Shafiei-Sabet, S., Hamad, W.Y. and Hatzikiriakos, S.G. (2014) Ionic Strength Effects on the Microstructure and Shear Rheology of Cellulose Nanocrystal Suspensions. Cellulose, 21, 3347-3359.
https://doi.org/10.1007/s10570-014-0407-z
[36]  Heath, L. and Thielemans, W. (2010) Cellulose Nanowhisker Aerogels. Green Chemistry, 12, 1448-1453.
https://doi.org/10.1039/c0gc00035c
[37]  Thomas, B., et al. (2018) Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews, 118, 11575-11625.
https://doi.org/10.1021/acs.chemrev.7b00627
[38]  Shojaeiarani, J., Bajwa, D. and Shirzadifar, A. (2019) A Review on Cellulose Nanocrystals as Promising Biocompounds for the Synthesis of Nanocomposite Hydrogels. Carbohydrate Polymers, 216, 247-259.
https://doi.org/10.1016/j.carbpol.2019.04.033
[39]  Tummala, G.K., Felde, N., Gustafsson, S., Bubholz, A., Schröder, S. and Mihranyan, A. (2017) Light Scattering in Poly(vinyl alcohol) Hydrogels Reinforced with Nanocellulose for Ophthalmic Use. Optical Materials Express, 7, Article No. 2824.
https://doi.org/10.1364/ome.7.002824
[40]  Basu, A., Lindh, J., Ålander, E., Strømme, M. and Ferraz, N. (2017) On the Use of Ion-Crosslinked Nanocellulose Hydrogels for Wound Healing Solutions: Physicochemical Properties and Application-Oriented Biocompatibility Studies. Carbohydrate Polymers, 174, 299-308.
https://doi.org/10.1016/j.carbpol.2017.06.073
[41]  Li, J., Yu, F., Chen, G., Liu, J., Li, X., Cheng, B., et al. (2020) Moist-Retaining, Self-Recoverable, Bioadhesive, and Transparent in Situ Forming Hydrogels to Accelerate Wound Healing. ACS Applied Materials & Interfaces, 12, 2023-2038.
https://doi.org/10.1021/acsami.9b17180
[42]  Jansen, K., Schuurmans, C.C.L., Jansen, J., Masereeuw, R. and Vermonden, T. (2017) Hydrogel-Based Cell Therapies for Kidney Regeneration: Current Trends in Biofabrication and in Vivo Repair. Current Pharmaceutical Design, 23, 3845-3857.
https://doi.org/10.2174/1381612823666170710155726
[43]  Wu, T., Farnood, R., O’Kelly, K. and Chen, B. (2014) Mechanical Behavior of Transparent Nanofibrillar Cellulose-Chitosan Nanocomposite Films in Dry and Wet Conditions. Journal of the Mechanical Behavior of Biomedical Materials, 32, 279-286.
https://doi.org/10.1016/j.jmbbm.2014.01.014
[44]  Latifi, N., Asgari, M., Vali, H. and Mongeau, L. (2018) A Tissue-Mimetic Nano-Fibrillar Hybrid Injectable Hydrogel for Potential Soft Tissue Engineering Applications. Scientific Reports, 8, Article No. 1047.
https://doi.org/10.1038/s41598-017-18523-3
[45]  Liu, R., Zhang, S. and Chen, X. (2020) Injectable Hydrogels for Tendon and Ligament Tissue Engineering. Journal of Tissue Engineering and Regenerative Medicine, 14, 1333-1348.
https://doi.org/10.1002/term.3078
[46]  Ahmed, J., Gultekinoglu, M. and Edirisinghe, M. (2020) Bacterial Cellulose Micro-Nano Fibres for Wound Healing Applications. Biotechnology Advances, 41, Article ID: 107549.
https://doi.org/10.1016/j.biotechadv.2020.107549
[47]  Maurer, K., Renkert, M., Duis, M., Weiss, C., Wessel, L.M. and Lange, B. (2022) Application of Bacterial Nanocellulose-Based Wound Dressings in the Management of Thermal Injuries: Experience in 92 Children. Burns, 48, 608-614.
https://doi.org/10.1016/j.burns.2021.07.002
[48]  Kurniawan, H., Lai, J. and Wang, M. (2012) Biofunctionalized Bacterial Cellulose Membranes by Cold Plasmas. Cellulose, 19, 1975-1988.
https://doi.org/10.1007/s10570-012-9785-2
[49]  Leal, S., Cristelo, C., Silvestre, S., Fortunato, E., Sousa, A., Alves, A., et al. (2020) Hydrophobic Modification of Bacterial Cellulose Using Oxygen Plasma Treatment and Chemical Vapor Deposition. Cellulose, 27, 10733-10746.
https://doi.org/10.1007/s10570-020-03005-z
[50]  Tortorella, S., Vetri Buratti, V., Maturi, M., Sambri, L., Comes Franchini, M. and Locatelli, E. (2020) Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review. International Journal of Nanomedicine, 15, 9909-9937.
https://doi.org/10.2147/ijn.s266103
[51]  Wang, J., Zhao, L., Zhang, A., Huang, Y., Tavakoli, J. and Tang, Y. (2018) Novel Bacterial Cellulose/Gelatin Hydrogels as 3D Scaffolds for Tumor Cell Culture. Polymers, 10, Article No. 581.
https://doi.org/10.3390/polym10060581
[52]  Osorio, M., Ortiz, I., Gañán, P., Naranjo, T., Zuluaga, R., van Kooten, T.G., et al. (2019) Novel Surface Modification of Three-Dimensional Bacterial Nanocellulose with Cell-Derived Adhesion Proteins for Soft Tissue Engineering. Materials Science and Engineering: C, 100, 697-705.
https://doi.org/10.1016/j.msec.2019.03.045
[53]  Meftahi, A., Khajavi, R., Rashidi, A., Rahimi, M.K. and Bahador, A. (2018) Preventing the Collapse of 3D Bacterial Cellulose Network via Citric Acid. Journal of Nanostructure in Chemistry, 8, 311-320.
https://doi.org/10.1007/s40097-018-0275-4
[54]  Sharma, C. and Bhardwaj, N.K. (2019) Bacterial Nanocellulose: Present Status, Biomedical Applications and Future Perspectives. Materials Science and Engineering: C, 104, Article ID: 109963.
https://doi.org/10.1016/j.msec.2019.109963
[55]  Chen, Z., Hu, Y., Shi, G., Zhuo, H., Ali, M.A., Jamróz, E., et al. (2023) Advanced Flexible Materials from Nanocellulose. Advanced Functional Materials, 33, Article ID: 2214245.
https://doi.org/10.1002/adfm.202214245
[56]  Patil, T.V., Patel, D.K., Dutta, S.D., Ganguly, K., Santra, T.S. and Lim, K. (2022) Nanocellulose, a Versatile Platform: From the Delivery of Active Molecules to Tissue Engineering Applications. Bioactive Materials, 9, 566-589.
https://doi.org/10.1016/j.bioactmat.2021.07.006
[57]  Wang, C., Bai, J., Tian, P., Xie, R., Duan, Z., Lv, Q., et al. (2021) The Application Status of Nanoscale Cellulose-Based Hydrogels in Tissue Engineering and Regenerative Biomedicine. Frontiers in Bioengineering and Biotechnology, 9, Article ID: 732513.
https://doi.org/10.3389/fbioe.2021.732513
[58]  Harun-Ur-Rashid, M., Jahan, I., Foyez, T. and Imran, A.B. (2023) Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. Micromachines, 14, Article No. 1786.
https://doi.org/10.3390/mi14091786
[59]  Shahriari-Khalaji, M., Hong, S., Hu, G., Ji, Y. and Hong, F.F. (2020) Bacterial Nanocellulose-Enhanced Alginate Double-Network Hydrogels Cross-Linked with Six Metal Cations for Antibacterial Wound Dressing. Polymers, 12, Article No. 2683.
https://doi.org/10.3390/polym12112683
[60]  Okur, M.E., Karantas, I.D., Şenyiğit, Z., Üstündağ Okur, N. and Siafaka, P.I. (2020) Recent Trends on Wound Management: New Therapeutic Choices Based on Polymeric Carriers. Asian Journal of Pharmaceutical Sciences, 15, 661-684.
https://doi.org/10.1016/j.ajps.2019.11.008
[61]  Fu, L., Zhou, P., Zhang, S. and Yang, G. (2013) Evaluation of Bacterial Nanocellulose-Based Uniform Wound Dressing for Large Area Skin Transplantation. Materials Science and Engineering: C, 33, 2995-3000.
https://doi.org/10.1016/j.msec.2013.03.026
[62]  Lamboni, L., Li, Y., Liu, J. and Yang, G. (2016) Silk Sericin-Functionalized Bacterial Cellulose as a Potential Wound-Healing Biomaterial. Biomacromolecules, 17, 3076-3084.
https://doi.org/10.1021/acs.biomac.6b00995
[63]  Napavichayanun, S., Yamdech, R. and Aramwit, P. (2016) The Safety and Efficacy of Bacterial Nanocellulose Wound Dressing Incorporating Sericin and Polyhexamethylene Biguanide: In Vitro, in Vivo and Clinical Studies. Archives of Dermatological Research, 308, 123-132.
https://doi.org/10.1007/s00403-016-1621-3
[64]  Czaja, W.K., Young, D.J., Kawecki, M. and Brown, R.M. (2006) The Future Prospects of Microbial Cellulose in Biomedical Applications. Biomacromolecules, 8, 1-12.
https://doi.org/10.1021/bm060620d
[65]  Panaitescu, D.M., Ionita, E.R., Nicolae, C., Gabor, A.R., Ionita, M.D., Trusca, R., et al. (2018) Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applications. Polymers, 10, Article No. 1249.
https://doi.org/10.3390/polym10111249
[66]  Tyagi, P., Mathew, R., Opperman, C., Jameel, H., Gonzalez, R., Lucia, L., et al. (2018) High-Strength Antibacterial Chitosan-Cellulose Nanocrystal Composite Tissue Paper. Langmuir, 35, 104-112.
https://doi.org/10.1021/acs.langmuir.8b02655
[67]  Kosiol, P., Kahrs, C., Thom, V., Ulbricht, M. and Hansmann, B. (2018) Investigation of Virus Retention by Size Exclusion Membranes under Different Flow Regimes. Biotechnology Progress, 35, e2747.
https://doi.org/10.1002/btpr.2747
[68]  Leung, W.W.F. and Sun, Q. (2020) Electrostatic Charged Nanofiber Filter for Filtering Airborne Novel Coronavirus (COVID-19) and Nano-Aerosols. Separation and Purification Technology, 250, Article ID: 116886.
https://doi.org/10.1016/j.seppur.2020.116886
[69]  Asper, M., Hanrieder, T., Quellmalz, A. and Mihranyan, A. (2015) Removal of Xenotropic Murine Leukemia Virus by Nanocellulose Based Filter Paper. Biologicals, 43, 452-456.
https://doi.org/10.1016/j.biologicals.2015.08.001
[70]  Gopakumar, D.A., Arumughan, V., Pasquini, D., (Ben) Leu, S., H.P.S., A.K. and Thomas, S. (2019) Nanocellulose-Based Membranes for Water Purification. In: Thomas, S., et al., Eds., Nanoscale Materials in Water Purification, Elsevier, 59-85.
https://doi.org/10.1016/b978-0-12-813926-4.00004-5
[71]  Tran, M. and Wang, C. (2014) Semi-Solid Materials for Controlled Release Drug Formulation: Current Status and Future Prospects. Frontiers of Chemical Science and Engineering, 8, 225-232.
https://doi.org/10.1007/s11705-014-1429-7
[72]  Trovatti, E., Silva, N.H.C.S., Duarte, I.F., Rosado, C.F., Almeida, I.F., Costa, P., et al. (2011) Biocellulose Membranes as Supports for Dermal Release of Lidocaine. Biomacromolecules, 12, 4162-4168.
https://doi.org/10.1021/bm201303r
[73]  Psimadas, D., Georgoulias, P., Valotassiou, V. and Loudos, G. (2012) Molecular Nanomedicine towards Cancer: 111In-Labeled Nanoparticles. Journal of Pharmaceutical Sciences, 101, 2271-2280.
https://doi.org/10.1002/jps.23146
[74]  Dash, R. and Ragauskas, A.J. (2012) Synthesis of a Novel Cellulose Nanowhisker-Based Drug Delivery System. RSC Advances, 2, Article No. 3403.
https://doi.org/10.1039/c2ra01071b
[75]  Dugan, J.M., Gough, J.E. and Eichhorn, S.J. (2013) Bacterial Cellulose Scaffolds and Cellulose Nanowhiskers for Tissue Engineering. Nanomedicine, 8, 287-298.
https://doi.org/10.2217/nnm.12.211
[76]  Watanabe, K., Eto, Y., Takano, S., Nakamori, S., Shibai, H. and Yamanaka, S. (1993) A New Bacterial Cellulose Substrate for Mammalian Cell Culture: A New Bacterial Cellulose Substrate. Cytotechnology, 13, 107-114.
https://doi.org/10.1007/bf00749937
[77]  Langer, R. and Tirrell, D.A. (2004) Designing Materials for Biology and Medicine. Nature, 428, 487-492.
https://doi.org/10.1038/nature02388
[78]  Chen, J. and Chang, Y. (2011) Preparation and Characterization of Composite Nanofibers of Polycaprolactone and Nanohydroxyapatite for Osteogenic Differentiation of Mesenchymal Stem Cells. Colloids and Surfaces B: Biointerfaces, 86, 169-175.
https://doi.org/10.1016/j.colsurfb.2011.03.038
[79]  Baiguera, S., Gonfiotti, A., Jaus, M., Comin, C.E., Paglierani, M., Del Gaudio, C., et al. (2011) Development of Bioengineered Human Larynx. Biomaterials, 32, 4433-4442.
https://doi.org/10.1016/j.biomaterials.2011.02.055
[80]  Rosen, C.L., Steinberg, G.K., DeMonte, F., Delashaw, J.B., Lewis, S.B., Shaffrey, M.E., et al. (2011) Results of the Prospective, Randomized, Multicenter Clinical Trial Evaluating a Biosynthesized Cellulose Graft for Repair of Dural Defects. Neurosurgery, 69, 1093-1104.
https://doi.org/10.1227/neu.0b013e3182284aca
[81]  Malm, C.J., Risberg, B., Bodin, A., Bäckdahl, H., Johansson, B.R., Gatenholm, P., et al. (2011) Small Calibre Biosynthetic Bacterial Cellulose Blood Vessels: 13-Months Patency in a Sheep Model. Scandinavian Cardiovascular Journal, 46, 57-62.
https://doi.org/10.3109/14017431.2011.623788
[82]  Martínez, H., Brackmann, C., Enejder, A. and Gatenholm, P. (2012) Mechanical Stimulation of Fibroblasts in Micro‐Channeled Bacterial Cellulose Scaffolds Enhances Production of Oriented Collagen Fibers. Journal of Biomedical Materials Research Part A, 100, 948-957.
https://doi.org/10.1002/jbm.a.34035
[83]  Gatenholm, P. and Klemm, D. (2010) Bacterial Nanocellulose as a Renewable Material for Biomedical Applications. MRS Bulletin, 35, 208-213.
https://doi.org/10.1557/mrs2010.653
[84]  Klemm, D., Heublein, B., Fink, H. and Bohn, A. (2005) Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358-3393.
https://doi.org/10.1002/anie.200460587
[85]  Millon, L.E., Guhados, G. and Wan, W. (2008) Anisotropic Polyvinyl Alcohol—Bacterial Cellulose Nanocomposite for Biomedical Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86, 444-452.
https://doi.org/10.1002/jbm.b.31040
[86]  Azevedo, E.P., Retarekar, R., Raghavan, M.L. and Kumar, V. (2012) Mechanical Properties of Cellulose: Chitosan Blends for Potential Use as a Coronary Artery Bypass Graft. Journal of Biomaterials Science, Polymer Edition, 24, 239-252.
https://doi.org/10.1080/09205063.2012.690273
[87]  Gaihre, B. and Jayasuriya, A.C. (2016) Fabrication and Characterization of Carboxymethyl Cellulose Novel Microparticles for Bone Tissue Engineering. Materials Science and Engineering: C, 69, 733-743.
https://doi.org/10.1016/j.msec.2016.07.060
[88]  Chen, Y., Roohani-Esfahani, S., Lu, Z., Zreiqat, H. and Dunstan, C.R. (2015) Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts. PLOS ONE, 10, e0113426.
https://doi.org/10.1371/journal.pone.0113426
[89]  Posocco, B., Dreussi, E., De Santa, J., Toffoli, G., Abrami, M., Musiani, F., et al. (2015) Polysaccharides for the Delivery of Antitumor Drugs. Materials, 8, 2569-2615.
https://doi.org/10.3390/ma8052569
[90]  Silva, R.M., Pereira, F.V., Mota, F.A.P., Watanabe, E., Soares, S.M.C.S. and Santos, M.H. (2016) Dental Glass Ionomer Cement Reinforced by Cellulose Microfibers and Cellulose Nanocrystals. Materials Science and Engineering: C, 58, 389-395.
https://doi.org/10.1016/j.msec.2015.08.041

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133