|
基于GCN的杭州地铁客流量分析与预测
|
Abstract:
本文利用2021年杭州地铁的支付宝移动支付数据,通过详细的数据预处理和特征分析,构建了一个基于GCN的预测模型,旨在提高对未来一天内不同时间段的客流量预测准确性。该模型特别考虑了地理空间相关性、分布差异性以及动态分布相关性等多个维度,以便更好地理解站点间的关联性和乘客流动模式。实验结果显示,该模型在预测进站和出站客流量上的均方误差分别为2245.45和2127.09,表现优于XGBoost和LightGBM等传统机器学习模型,能为地铁运营者提供更加精准的客流量预测数据,帮助其在国庆假期等特殊时期更好地进行客流管理和资源调度。
This study leverages Alipay mobile payment data from Hangzhou Metro in 2021 to construct a GCN-based prediction model through detailed data preprocessing and feature analysis. The aim is to enhance the accuracy of predicting passenger flows across different time periods within a day. The model specifically incorporates multiple dimensions such as geographical spatial correlations, distribution differences, and dynamic distribution correlations to better understand inter-station relationships and passenger movement patterns. Experimental results demonstrate that the model achieves mean squared errors of 2245.45 for entry flows and 2127.09 for exit flows, outperforming traditional machine learning models like XGBoost and LightGBM. This improved accuracy provides metro operators with more precise passenger flow predictions, aiding in effective crowd management and resource allocation during special periods such as National Day holidays.
[1] | 胡明伟, 施小龙, 吴雯琳, 等. 城市轨道交通车站短时客流机器学习预测方法[J]. 深圳大学学报(理工版), 2022, 39(5): 593-599. |
[2] | 田恒宇. 基于机器学习的短时地铁进出站客流预测方法研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2020. |
[3] | Park, Y., Choi, Y., Kim, K. and Yoo, J.K. (2022) Machine Learning Approach for Study on Subway Passenger Flow. Scientific Reports, 12, Article No. 2754. https://doi.org/10.1038/s41598-022-06767-7 |
[4] | 张健, 陈颖, Panchamy, K., 等. 基于注意力机制的城市轨道交通网络级多步短时客流时空综合预测模型[J]. 地球信息科学学报, 2023, 25(4): 698-713. |
[5] | Chen, P., Fu, X. and Wang, X. (2022) A Graph Convolutional Stacked Bidirectional Unidirectional-LSTM Neural Network for Metro Ridership Prediction. IEEE Transactions on Intelligent Transportation Systems, 23, 6950-6962. https://doi.org/10.1109/tits.2021.3065404 |
[6] | Zhang, Z., Han, Y., Peng, T., Li, Z. and Chen, G. (2022) A Comprehensive Spatio-Temporal Model for Subway Passenger Flow Prediction. ISPRS International Journal of Geo-Information, 11, Article 341. https://doi.org/10.3390/ijgi11060341 |
[7] | 王雪琴, 许心越, 伍元凯, 等. 基于混合深度学习模型的城轨短时客流预测[J]. 铁道科学与工程学报, 2022, 19(12): 3557-3568. |
[8] | 孙大雁, 梁志峰, 李春红, 王峰. 基于GCN-LSTM模型的日径流模拟预测及超参数组合研究[J/OL]. 中国农村水利水电, 1-16. http://kns.cnki.net/kcms/detail/42.1419.tv.20241115.1636.008.html, 2024-11-18. |
[9] | 唐继强, 张远琼, 邹兴悦, 邱凌. 融合注意力与时空图卷积网络的交通流量预测[J/OL]. 昆明理工大学学报(自然科学版), 1-9. https://doi.org/10.16112/j.cnki.53-1223/n.2025.01.482, 2024-10-24. |
[10] | 李嘉, 文婧, 周正, 等. 基于改进GCN-sbuLSTM模型的高速公路交通量预测方法[J]. 交通运输研究, 2024, 10(3): 56-65. |
[11] | 苏焕银, 彭舒婷, 曾琼芳, 等. 基于VMD-LSTM混合模型的城际高速铁路时变客流预测[J]. 铁道科学与工程学报, 2023, 20(4): 1200-1210. |
[12] | Acker, A. and Murthy, D. (2020) What Is Venmo? A Descriptive Analysis of Social Features in the Mobile Payment Platform. Telematics and Informatics, 52, Article 101429. https://doi.org/10.1016/j.tele.2020.101429 |
[13] | 马茜, 梁奕, 段毅, 等. 基于动态稀疏注意力的地铁客流预测模型[J]. 城市轨道交通研究, 2022, 25(4): 22-26. |
[14] | 光志瑞. 城市轨道交通节假日客流预测研究[J]. 交通工程, 2017, 17(3): 27-35. |
[15] | 熊燕. 大城市节假日前轨道客运量特征分析及预测[D]: [博士学位论文]. 北京: 北京工业大学, 2016. |