|
卧螺离心机螺旋叶片倾角对煤泥水分离特性影响研究
|
Abstract:
煤炭是我国能源结构中的重要组成部分,在“绿色、智慧矿山”发展背景下,高效处理井下煤泥水已成为矿山环保与资源利用的关键课题。卧螺离心机因其高效的固液分离性能被广泛应用于煤泥水处理领域。为进一步提高分离效率,以矿用LW450型卧螺离心机为研究对象,重点探讨螺旋叶片倾角对分离性能的影响。通过建立三维几何模型,采用CFD数值模拟结合实验验证的方法,系统分析不同螺旋叶片倾角(0?、2?、4?、6?、8?)对固相回收率、动压分布和固相体积分布的作用规律。研究表明,螺旋叶片倾角对固相回收率具有显著影响,呈现先上升后下降的趋势。倾角变化对转鼓柱段的动压分布影响较小,但对出渣口动压分布的影响较大。当倾角为4?时,固相回收率达到最大值,同时在转鼓锥段形成较厚的固相沉积层,且动压分布更加平稳,从而显著提升了分离性能。本研究为优化卧螺离心机的结构设计及煤泥水高效处理提供了重要的理论依据和技术支持,对推动绿色矿山建设及资源可持续利用具有重要意义。
Coal is an important part of our country’s energy structure. Under the background of “green and intelligent mine” development, efficient treatment of underground slime water has become a key issue of mine environmental protection and resource utilization. Decanter centrifuge is widely used in the field of slime water treatment because of its highly efficient solid-liquid separation performance. In order to further improve the separation efficiency, taking the mine LW450 decanter centrifuge as the research object, the influence of the inclination Angle of the spiral blade on the separation performance was mainly discussed. By establishing a three-dimensional geometric model, CFD numerical simulation combined with experimental verification method was used to systematically analyze the effect of different screw blade inclination angles (0?, 2?, 4?, 6?, 8?) on solid recovery, dynamic pressure distribution and solid volume distribution. The results show that the tilt Angle of the spiral blade has a significant effect on the recovery of solid phase, showing a trend of first increasing and then decreasing. The change of inclination Angle has little influence on the dynamic pressure distribution of the drum column section, but has a great influence on the dynamic pressure distribution of the slag outlet. When the dip Angle is 4?, the recovery of solid phase reaches the maximum value, and a thicker solid phase deposition layer is formed in the drum cone section, and the dynamic pressure distribution is more stable, which significantly improves the separation performance. This study provides an important theoretical basis and technical support for the optimization of the structure design of the decanter centrifuge and the efficient treatment of slime water, which is of great significance for promoting green mine construction and sustainable utilization of resources.
[1] | 王鹏. 煤矿井下气动型煤泥水快速分离装置的研制与应用[J]. 能源与节能, 2024(7): 256-258, 263. |
[2] | 程琳. 离心分离机在煤泥水分离中的应用研究[J]. 自动化应用, 2020(8): 120-121. |
[3] | 袁惠新. 分离过程与设备[M]. 北京: 化学工业出版社, 2008: 38-42. |
[4] | Tan, W., Qiao, L., Sha, E., Tao, Y. and Liu, L. (2012) Optimal Design of the Accelerator Disk in a Two-Stage Piston Pusher Centrifuge Using Numerical Simulation. Industrial & Engineering Chemistry Research, 51, 4632-4642. https://doi.org/10.1021/ie201331x |
[5] | 朱桂华, 张傲林, 彭南辉, 等. 卧螺离心机用于盐泥固液分离时转鼓转速对流场特性的影响[J]. 化工进展, 2019, 38(6): 2590-2599. |
[6] | Kinnarinen, T. and Häkkinen, A. (2013) Experimental Study on the Influence of Selected Process Variables on the Separation of a Fine Particle Suspension with a Pilot Scale Decanter Centrifuge. Particulate Science and Technology, 31, 603-611. https://doi.org/10.1080/02726351.2013.811708 |
[7] | 姜毓圣, 袁惠新, 付双成. 物性参数对卧螺离心机分离性能影响的研究[J]. 石油机械, 2016, 44(7): 36-41. |
[8] | 张建中, 李峰, 胡化增, 等. 矿用LW800卧螺离心机转鼓锥角结构优化[J]. 流体机械, 2019, 47(7): 11-14, 38. |
[9] | Menesklou, P., Nirschl, H. and Gleiss, M. (2020) Dewatering of Finely Dispersed Calcium Carbonate-Water Slurries in Decanter Centrifuges: About Modelling of a Dynamic Simulation Tool. Separation and Purification Technology, 251, Article ID: 117287. https://doi.org/10.1016/j.seppur.2020.117287 |
[10] | 刘丽艳, 刘小康, 樊东东, 等. 卧螺离心机进料分布器的流场模拟与结构优化[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(1): 35-41. |
[11] | Fu, S., Li, K., Zhou, F., Yuan, H. and Shen, S. (2023) Study on the Structure of Energy‐saving Bend Pipes in a Decanter Centrifuge. Asia-Pacific Journal of Chemical Engineering, 19, e2982. https://doi.org/10.1002/apj.2982 |
[12] | Yuan, H., Zhang, Y., Fu, S. and Jiang, Y. (2018) Influence of the Length-Diameter Ratio and the Depth of Liquid Pool in a Bowl on Separation Performance of a Decanter Centrifuge. In: Wang, K., Wang, Y., Strandhagen, J. and Yu, T., Eds., Advanced Manufacturing and Automation VIII. IWAMA 2018, Springer, 78-85. https://doi.org/10.1007/978-981-13-2375-1_12 |
[13] | 孔令捷. 卧螺离心机螺旋结构对油砂分离性能的影响研究[D]: [硕士学位论文]. 西安: 西安石油大学, 2023. |
[14] | 刘尚铭. 卧螺离心机处理污水污泥的运行管理探析[J]. 设备管理与维修, 2022(10): 28-29. |
[15] | 谭蔚, 钟伟良, 闫浩, 刘丽艳, 朱国瑞. 卧式螺旋卸料离心机研究的回顾与展望[J]. 化工进展, 2016, 35(S2): 46-50. |
[16] | Baust, H.K., Hammerich, S., König, H., Nirschl, H. and Gleiß, M. (2023) Resolved Simulation of the Clarification and Dewatering in Decanter Centrifuges. Processes, 12, Article 9. https://doi.org/10.3390/pr12010009 |