全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

覆盆子多酚的大孔树脂富集工艺优化及生物活性评价
Optimization of Macroporous Resin Enrichment Process and Determination of Bioactivity of Polyphenols from Rubus chingii Hu

DOI: 10.12677/hjfns.2025.141010, PP. 63-76

Keywords: 覆盆子,多酚,大孔树脂,工艺优化,生物活性
Rubus chingii Hu
, Polyphenols, Macroporous Resin, Process Optimization, Biological Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究覆盆子多酚的大孔树脂富集工艺,并评价覆盆子多酚的生物活性。通过静态吸附–解吸试验选择适合富集覆盆子多酚的大孔树脂,拟合吸附方程判断大孔树脂的吸附动力学模型,以大孔树脂对覆盆子多酚粗提物中多酚的吸附量和解吸率为指标,对大孔树脂的上样液pH、多酚上样量、解吸液乙醇体积分数进行单因素试验,并通过正交试验确定大孔树脂富集覆盆子多酚的最优条件组合;评价富集后覆盆子多酚的纯度、对1,1-二苯-2-苦肼基(DPPH·)清除率以及对黄嘌呤氧化酶和α-葡萄糖苷酶的抑制活性,通过分子对接评价覆盆子主成分鞣花酸与黄嘌呤氧化酶、α-葡萄糖苷酶的结合能力。结果显示,AB-8大孔树脂最适合富集覆盆子多酚且其吸附覆盆子多酚的过程符合准二阶动力学模型,AB-8大孔树脂在上样液pH为3、多酚上样量为30 mg/g树脂、解吸液的乙醇体积分数为90%时,制备的覆盆子多酚的得率最高,达到85.36 ± 0.78%,富集后覆盆子多酚纯度从23.81 ± 1.75%上升到68.58 ± 0.60%,对DPPH·的清除率以及对黄嘌呤氧化酶和α-葡萄糖苷酶的抑制率的IC50分别为59.09 ± 0.42 μg/mL、97.71 ± 2.75 μg/mL、3.98 ± 0.43 μg/mL,分子对接结果也显示鞣花酸化合物与黄嘌呤氧化酶和α-葡萄糖苷酶有较好的结合能力。本研究为覆盆子多酚的工业化生产和开发利用提供理论参考。
The study was conducted to optimize the adsorption process of polyphenols from raspberry (Rubus chingii Hu) on macroporous resin and evaluate the biological activity of polyphenols from raspberry . The macroporous resin suitable for adsorbing raspberry polyphenols was selected through static adsorption-desorption experiments, and the adsorption kinetic model was determined by fitting the adsorption equation. The adsorption capacity and desorption rate of polyphenols in crude extract of raspberry polyphenols by macroporous resin were used as indicators, and the pH of sample solution, the amount of polyphenol sample, and the ethanol volume fraction of desorption solution were tested by single factor test. The optimal combination of polyphenol enrichment conditions was determined by orthogonal test. The purity, DPPH· scavenging rate, and inhibition rates of xanthine oxidase and α-glucosidase of the polyphenols from raspberry adsorbed by macroporous resin were evaluated. The binding ability of ellagic acid, the main component of raspberry, to xanthine oxidase and α-glucosidase was evaluated by molecular docking. The results showed that AB-8 macroporous resin was the most suitable for adsorbing polyphenols from raspberry, and the adsorption process of polyphenols from raspberry on AB-8 macroporous resin conformed to the quasi-second-order kinetic model. When the pH of the feed solution was 3, the loading amount of polyphenols was 30 mg/g of resin, and the ethanol content of the elution solution was 90%, the yield of polyphenols from raspberry prepared by AB-8 macroporous resin was the highest, reaching 85.36 ± 0.78%. The purity of polyphenols from raspberry adsorbed by AB-8 macroporous resin increased from 23.81

References

[1]  Yu, X., Wang, J., Zhang, M., Ma, X. and Xu, X. (2024) Green and Efficient Extraction of Polyphenols from the Leaves of Quercus dentata Thunb and in Vitro Antioxidant Activities of Polyphenol Extract. Sustainable Chemistry and Pharmacy, 41, Article ID: 101662.
https://doi.org/10.1016/j.scp.2024.101662
[2]  Zhong, W., Yuan, W., Wang, J., Wu, Z., Du, H., Huang, X., et al. (2024) Antioxidant and Preservation Effects of Tea Polyphenols on Apple Juice. Food Bioscience, 60, Article ID: 104288.
https://doi.org/10.1016/j.fbio.2024.104288
[3]  Smullen, J., Koutsou, G.A., Foster, H.A., Zumbé, A. and Storey, D.M. (2007) The Antibacterial Activity of Plant Extracts Containing Polyphenols against streptococcus Mutans. Caries Research, 41, 342-349.
https://doi.org/10.1159/000104791
[4]  Sarv, V., Venskutonis, P.R. and Bhat, R. (2020) The Sorbus spp.—Underutilised Plants for Foods and Nutraceuticals: Review on Polyphenolic Phytochemicals and Antioxidant Potential. Antioxidants, 9, Article 813.
https://doi.org/10.3390/antiox9090813
[5]  张子程. 紫薯花色苷干预尿酸代谢异常的分子机制研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2019.
[6]  Agu, K.C., Eluehike, N., Ofeimun, R.O., Abile, D., Ideho, G., Ogedengbe, M.O., et al. (2019) Possible Anti-Diabetic Potentials of Annona Muricata (Soursop): Inhibition of α-Amylase and α-Glucosidase Activities. Clinical Phytoscience, 5, Article No. 21.
https://doi.org/10.1186/s40816-019-0116-0
[7]  陈奎霖, 黄达荣, 黄少杰, 等. 覆盆子活性成分及其综合利用研究进展[J]. 食品与机械, 2022, 38(9): 219-226.
[8]  夏威. 覆盆子多酚提取工艺及其美白作用研究[D]: [硕士学位论文]. 南京: 南京农业大学, 2022.
[9]  钟方丽, 徐秀杰, 王晓林. 覆盆子总酚酸纯化工艺研究[J]. 食品工业, 2015, 36(11): 155-159.
[10]  Richard-Dazeur, C., Jacolot, P., Niquet-Léridon, C., Goethals, L., Barbezier, N. and Anton, P.M. (2023) HPLC-DAD Optimization of Quantification of Vescalagin, Gallic and Ellagic Acid in Chestnut Tannins. Heliyon, 9, e18993.
https://doi.org/10.1016/j.heliyon.2023.e18993
[11]  张晶, 汤尘尘, 方艳. HPLC法同时测定覆盆子中7个成分的含量[J]. 中国药师, 2020, 23(12): 2496-2499.
[12]  Sang, J., Liu, K., Ma, Q., Li, B. and Li, C. (2018) Combination of a Deep Eutectic Solvent and Macroporous Resin for Green Recovery of Anthocyanins from Nitraria tangutorun Bobr. Fruit. Separation Science and Technology, 54, 3082-3090.
https://doi.org/10.1080/01496395.2018.1559190
[13]  王燕燕. 大孔树脂分离纯化枸杞黄酮的研究[D]: [硕士学位论文]. 天津: 天津大学, 2014.
[14]  Wu, S., Wang, Y., Gong, G., Li, F., Ren, H. and Liu, Y. (2015) Adsorption and Desorption Properties of Macroporous Resins for Flavonoids from the Extract of Chinese Wolfberry (Lycium barbarum L.). Food and Bioproducts Processing, 93, 148-155.
https://doi.org/10.1016/j.fbp.2013.12.006
[15]  Zhang, Y., Yin, C., Kong, L. and Jiang, D. (2011) Extraction Optimisation, Purification and Major Antioxidant Component of Red Pigments Extracted from Camellia Japonica. Food Chemistry, 129, 660-664.
https://doi.org/10.1016/j.foodchem.2011.05.001
[16]  谢子玉, 王可尔, 赵雯靓, 等. 不同肉色甘薯的营养成分与生物活性[J]. 浙江农业学报, 2021, 33(2): 183-192.
[17]  叶超尹. 不同成熟期莲房化学成分分析及其抗痛风活性研究[D]: [硕士学位论文]. 杭州: 浙江工商大学, 2022.
[18]  刘意隆. 杨梅黄酮醇鉴定、纯化及其抑制α-葡萄糖苷酶的构效机制研究[D]: [博士学位论文]. 杭州: 浙江大学, 2020.
[19]  曾丽莹, 邓伊健, 陈洁瑜, 等. 基于网络药理学和分子对接探讨四妙丸治疗高尿酸血症的作用机制[J]. 南方医科大学学报, 2021, 41(4): 579-587.
[20]  王敏, 徐国辉, 赵一灵, 等. 金丝桃苷对黄嘌呤氧化酶的抑制作用及分子机理[J]. 食品工业科技, 2022, 43(12): 92-99.
[21]  国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2020: 399.
[22]  尚彦文. 蓝莓皮渣中花青素的分离纯化技术及稳定性研究[D]: [硕士学位论文]. 烟台: 烟台大学, 2023.
[23]  Yang, Y., Zhu, Q., Yan, X., Zhou, Z., Zhao, J., Xia, J., et al. (2024) Enrichment of Polyphenols from Cinnamomum Camphora Seed Kernel by Macroporous Adsorption Resins and Evaluation of Its Antioxidant and Enzyme Inhibitory Activities. Industrial Crops and Products, 222, Article ID: 119486.
https://doi.org/10.1016/j.indcrop.2024.119486
[24]  Hou, M. and Zhang, L. (2021) Adsorption/desorption Characteristics and Chromatographic Purification of Polyphenols from Vernonia patula (Dryand.) Merr. Using Macroporous Adsorption Resin. Industrial Crops and Products, 170, Article ID: 113729.
https://doi.org/10.1016/j.indcrop.2021.113729
[25]  吴彤, 盛亚男, 田禹, 等. 绿豆多酚的提取纯化、成分鉴定及抗氧化活性研究[J/OL]. 中国粮油学报: 1-14.
https://doi.org/10.20048/j.cnki.issn.1003-0174.000916, 2024-09-25.
[26]  彭琪越, 杜琳, 姚良帅, 等. 山药皮多酚纯化工艺优化及其抗氧化活性研究[J]. 粮食与油脂, 2024, 37(9): 135-146.
[27]  李琳琳, 王乐, 尹卫, 等. 紫皮大蒜多酚分离纯化及体外降血糖活性研究[J]. 中国调味品, 2023, 48(9): 18-23.
[28]  严学迎, 梁秋萍. 苦瓜多糖的制备、理化特征及降血糖作用[J]. 中国食品添加剂, 2023, 34(3): 135-141.
[29]  李怡彬. 芙蓉李多酚降尿酸作用及分子机制研究[D]: [博士学位论文]. 福州: 福建农林大学, 2023.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133