全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于大模型的引文情感分类问题的研究
A Research on Citation Sentiment Classification Based on Large Language Model

DOI: 10.12677/csa.2025.151021, PP. 209-219

Keywords: 引文情感分类,Llm,深度学习
Citation Sentiment Classification
, Llm, Deep Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对科学文献影响力排名研究领域中,需要对引文情感极性进行预测的问题,提出了将大语言模型的提示工程(零样本学习以及少样本学习)方法应用在引文情感分类中这一方案,分析当下热门大语言模型如Llama,Gpt-4o-Mini等以及基于Bert的深度学习模型在科学引文情感分类问题上的效果。首先通过基于大语言模型的提示工程方法预测引文情感极性,分析预测效果,再与基于Bert的深度学习模型在这一问题中的表现进行对比分析。实验结果表明,基于Bert的深度学习模型情感分类准确率在90%以上,最高可达94.31%,F1值均在80%以上;基于大语言模型的零样本学习和少样本学习方法分类效果与前者有明显差距,准确率最高可达84.70%,F1值最高仅可达63.65%。和基于Bert的深度学习模型分类效果相比,基于大语言模型的提示工程方法虽然在该任务中准确率受限,但其泛化能力较强,是一种简便且高效的方法,对于任务快速部署和应用非常有用。
This paper proposes a method that applies prompt engineering (zero-shot and few-shot learning) from large language models (LLMs) to predict citation sentiment polarity in scientific literature impact ranking research. The study analyzes the performance of popular LLMs, such as Llama and GPT-4o-Mini, and BERT-based deep learning models in the task of scientific citation sentiment classification. The method uses prompt engineering with large language models to predict sentiment polarity. The results are compared with those of BERT-based deep learning models. Experimental results show that BERT-based models achieve sentiment classification accuracy over 90%, with a maximum of 94.31%, and F1 scores above 80%. The zero-shot and few-shot learning methods based on large language models have a significant performance gap. Their maximum accuracy is 84.70%, and the highest F1 score is only 63.65%. Compared to BERT-based models, the prompt engineering method based on large language models has lower accuracy but shows strong generalization ability. It is a simple and efficient method for quick deployment and application.

References

[1]  Radicchi, F. (2012) In Science “There Is No Bad Publicity”: Papers Criticized in Comments Have High Scientific Impact. Scientific Reports, 2, Article No. 815.
https://doi.org/10.1038/srep00815
[2]  Baird, L.M. and Oppenheim, C. (1994) Do Citations Matter? Journal of Information Science, 20, 2-15.
https://doi.org/10.1177/016555159402000102
[3]  Chung, F. (2014) A Brief Survey of PageRank Algorithms. IEEE Transactions on Network Science and Engineering, 1, 38-42.
https://doi.org/10.1109/tnse.2014.2380315
[4]  Page, L. (1998) Te PageRank Citation Ranking: Bringing Order to the Web. Technical Report, Stanford Digital Library Technologies Project.
[5]  Bollen, J., Rodriquez, M.A. and Van de Sompel, H. (2006) Journal Status. Scientometrics, 69, 669-687.
https://doi.org/10.1007/s11192-006-0176-z
[6]  Jiang, J., Xu, S. and You, L. (2023) An Optimization Ranking Approach Based on Weighted Citation Networks and P-Rank Algorithm. Complexity, 2023, Article ID 7988848.
https://doi.org/10.1155/2023/7988848
[7]  Piryani, R., Madhavi, D. and Singh, V.K. (2017) Analytical Mapping of Opinion Mining and Sentiment Analysis Research during 2000-2015. Information Processing & Management, 53, 122-150.
https://doi.org/10.1016/j.ipm.2016.07.001
[8]  Yousif, A., Niu, Z., Tarus, J.K. and Ahmad, A. (2017) A Survey on Sentiment Analysis of Scientific Citations. Artificial Intelligence Review, 52, 1805-1838.
https://doi.org/10.1007/s10462-017-9597-8
[9]  Small, H. (2011) Interpreting Maps of Science Using Citation Context Sentiments: A Preliminary Investigation. Scientometrics, 87, 373-388.
https://doi.org/10.1007/s11192-011-0349-2
[10]  Athar, A. (2011) Sentiment Analysis of Citations Using Sentence Structure-Based Features. Proceedings of the ACL 2011 Student Session, Portland, June 2011, 81-87.
[11]  Poria, S., Chaturvedi, I., Cambria, E. and Hussain, A. (2016). Convolutional MKL Based Multimodal Emotion Recognition and Sentiment Analysis. 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, 12-15 December 2016, 439-448.
https://doi.org/10.1109/icdm.2016.0055
[12]  Ahmed Bilal, A., Ayhan Erdem, O. and Toklu, S. (2024) Children’s Sentiment Analysis from Texts by Using Weight Updated Tuned with Random Forest Classification. IEEE Access, 12, 70089-70104.
https://doi.org/10.1109/access.2024.3400992
[13]  Ghosal, T., Varanasi, K.K. and Kordoni, V. (2023) A Deep Multi-Tasking Approach Leveraging on Cited-Citing Paper Relationship for Citation Intent Classification. Scientometrics, 129, 767-783.
https://doi.org/10.1007/s11192-023-04811-5
[14]  Beltagy, I., Lo, K. and Cohan, A. (2019) SciBERT: A Pretrained Language Model for Scientific Text. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, November 2019, 3615-3620.
https://doi.org/10.18653/v1/d19-1371
[15]  Yu, D.H. and Hua, B.L. (2023) Sentiment Classification of Scientific Citation Based on Modified BERT Attention by Sentiment Dictionary. Joint Workshop of the 4th Extraction and Evaluation of Knowledge Entities from Scientific Documents and the 3rd AI + Informetrics (EEKEAII2023), Santa Fe, 26 June 2023, 59-64.
[16]  周文远, 王名扬, 井钰. 基于AttentionSBGMC模型的引文情感和引文目的自动分类研究[J]. 数据分析与知识发现, 2021, 5(12): 48-59.
[17]  Narejo, K.R., Zan, H., Dharmani, K.P., Zhou, L., Alahmadi, T.J., Assam, M., et al. (2024) EEBERT: An Emoji-Enhanced BERT Fine-Tuning on Amazon Product Reviews for Text Sentiment Classification. IEEE Access, 12, 131954-131967.
https://doi.org/10.1109/access.2024.3456039
[18]  Kheiri, K. and Karimi, H. (2023) SentimentGPT: Exploiting GPT for Advanced Sentiment Analysis and Its Departure from Current Machine Learning.
[19]  Roumeliotis, K.I., Tselikas, N.D. and Nasiopoulos, D.K. (2024) LLMS and NLP Models in Cryptocurrency Sentiment Analysis: A Comparative Classification Study. Big Data and Cognitive Computing, 8, Article No. 63.
https://doi.org/10.3390/bdcc8060063
[20]  Cohan, A., Ammar, W., van Zuylen, M. and Cady, F. (2019) Structural Scaffolds for Citation Intent Classification in Scientific Publications. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 3586-3596.
https://doi.org/10.18653/v1/n19-1361

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133