全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于TCN-BiLSTM的航空发动机寿命预测
Aero-Engine Life Prediction Based on TCN-BiLSTM

DOI: 10.12677/csa.2025.151017, PP. 163-176

Keywords: 航空发动机,剩余寿命预测,融合,TCN,BiLSTM
Aero-Engine
, Residual Life Prediction, Fusion, TCN, BiLSTM

Full-Text   Cite this paper   Add to My Lib

Abstract:

航空发动机是飞机的重要组成部分,其性能和可靠性直接影响飞机的安全性和经济效益。针对航空发动机寿命预测精度低和数据复杂度高的问题,提出基于一种基于TCN和BiLSTM融合模型用于航空发动机寿命预测。该模型通过TCN捕捉长期依赖关系和处理长序列数据,通过BiLSTM处理上下文信息和提取高级特征,将筛选出来的数据特征输入TCN-BiLSTM模型中预测航空发动机的剩余寿命。本文采用NASA开发的C-MAPSS数据进行实验,通过数据仿真验证,模型可以较为准确地预测出航空发动机的剩余寿命,并与SVG、MLP、CNN、LSTM和CNN-LSTM的预测结果相比较,对比结果证明TCN-BiLSTM模型的RSME和Score均低于上述模型方法,从而证明本文提出方法预测效果更好。
Aero-engine is an important part of aircraft, and its performance and reliability directly affect the safety and economic benefits of aircraft. Based on the problem of low accuracy and high data complexity of aero-engine life prediction, a fusion model based on TCN and BiLSTM is proposed. The model captures long-term dependencies and processes long sequence data through TCN, processes context information and extracts advanced features through BiLSTM, and inputs the screened data features into the TCN-BiLSTM model to predict the remaining life of the aero-engine. In this paper, the C-MAPSS data developed by NASA is used to experiment. Through data simulation, the model can accurately predict the remaining life of the aero-engine, and compared with the prediction results of SVG, MLP, CNN, LSTM and CNN-LSTM, and the comparison results prove that the RSME and Score of TCN-BiLSTM model are lower than the above model method, thus proving that the prediction effect is better.

References

[1]  Brandt, S.A. (2017) Introduction to Aeronautics: A Design Perspective. Cambridge University Press.
[2]  Mattingly, J.D., Heiser, W.H., Boyer, K.M., Haven, B.A. and Pratt, D.T. (2018) Aircraft Engine Design. 3rd Edition, American Institute of Aeronautics and Astronautics, Inc.
https://doi.org/10.2514/4.105173
[3]  Ozgen, S. and Ekmekci, A. (2018) Gas Turbine Engineering Handbook. Butterworth-Heinemann.
[4]  Ferri, A., Chiesa, R., Gaudioso, G., Kochanek, G. and Tarabanis, S. (2017) A Review of Prognostics and Health Management Approaches for Aircraft Engines. Journal of Aerospace Information Systems, 14, 687-706.
[5]  Khan, S.A., Rahman, M.A. and Sarker, R.A. (2017) A Review on Gas Turbine Life Management: Challenges, Strategies and Techniques. Renewable and Sustainable Energy Reviews, 75, 230-249.
[6]  Wang, P., Liu, J. and Zhang, L. (2019) A Comprehensive Review on Remaining Useful Life Prediction of Industrial Machinery. Mechanical Systems and Signal Processing, 115, 213-238.
[7]  Yu, J., Dong, X. and Huang, X. (2021) A Survey of Data-Driven Prognostics and Health Management Methods for Wind Turbines. Renewable and Sustainable Energy Reviews, 135, Article 110165.
[8]  Yang, Y., Li, C., Lim, C., Wang, P. and Liu, L. (2020) A Review of Current Data-Driven Prognostics and Health Management Frameworks. Renewable and Sustainable Energy Reviews, 132, Article 109936.
[9]  万晓凡, 徐泽宇, 张营. 基于Bi-LSTM的航空发动机寿命预测[J]. 农业装备与车辆工程, 2022, 60(7): 130-133.
[10]  马依琳, 陶慧玲, 董启文, 等. 基于Transformer的多特征融合的航空发动机剩余使用寿命预测[J]. 华东师范大学学报(自然科学版), 2022(5): 219-232.
[11]  王秀娜, 鲁守银, 任飞. 基于随机森林和时间卷积网络的航空发动机故障预测[J]. 计算机时代, 2022(10): 103-107.
[12]  王体春, 吴广胜, 咸玉贝, 等. 采用TCN-HS的滚动轴承剩余使用寿命预测[J]. 重庆理工大学学报(自然科学), 2023, 37(6): 204-211.
[13]  张加劲. 基于注意力机制和CNN-BiLSTM模型的航空发动机剩余寿命预测[J]. 电子测量与仪器学报, 2022, 36(8): 231-237.
[14]  郑李园, 吴鑫, 李君, 等. 基于TCN的电商商品需求预测[J]. 数字技术与应用, 2023, 41(1): 110-113.
[15]  赵帅斌, 林旭东, 翁晓健. 基于经验模态分解与投资者情绪的Attention-BiLSTM股价趋势预测模型[J]. 计算机应用, 2023, 43(S1): 112-118.
[16]  Lea, C., Vidal, R., Reiter, A. and Hager, G.D. (2016) Temporal Convolutional Networks: A Unified Approach to Action Segmentation. In: Lecture Notes in Computer Science, Springer, 47-54.
https://doi.org/10.1007/978-3-319-49409-8_7
[17]  Bai, S., Kolter, J.Z. and Koltun, V. (2018) An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.
[18]  Schuster, M. and Paliwal, K.K. (1997) Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal Processing, 45, 2673-2681.
https://doi.org/10.1109/78.650093
[19]  Saxena, A. and Goebel, K. (2008) Turbofan Engine Degradation Simulation Data Set. NASA Ames Prognostics Data Repository.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133