全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器视觉的水果种类识别
Fruit Type Recognition Based on Machine Vision

DOI: 10.12677/csa.2025.151014, PP. 136-145

Keywords: 机器视觉,水果识别,K210视觉模块
Machine Vision
, Fruit Recognition, K210 Vision Module

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,随着计算机技术的发展,机器视觉已经在各个领域得到了广泛的应用。其中,利用机器视觉技术来对水果种类进行精确识别是一直以来的研究热点。水果销售作为餐饮零售业的重要分支,正逐渐引入无接触服务的概念。通过非接触式水果销售机器人,消费者可以享受到安全、卫生、快速的购买体验,同时商家也因此获得更高效的销售方式和更为便捷的管理手段,其目的是实现自动化水果种类识别,节省农业劳动力资源,提高生产效率,促进智慧农业的发展。因此本课题利用K210视觉模块对水果进行图像采集,将采集的图像进行预处理、立体校正,接着在Mixhub开源数据平台进行模型训练,K210视觉模块不仅可以降低成本的使用,还可以精确识别水果的种类。
In recent years, with the development of computer technology, machine vision has been widely applied in various fields. Among them, the precise identification of fruit types using machine vision technology has been a research hotspot for a long time. Fruit sales, as an important branch of the catering and retail industry, are gradually introducing the concept of contactless service. Through contactless fruit vending robots, consumers can enjoy a safe, hygienic, and fast purchasing experience, while businesses obtain more efficient sales methods and more convenient management tools. The aim is to achieve automated fruit type recognition, save agricultural labor resources, increase production efficiency, and promote the development of smart agriculture. Therefore, this project utilizes the K210 vision module to capture images of fruits, preprocess and rectify the captured images in three dimensions, and then trains models on the Mixhub open-source data platform. The K210 vision module not only reduces costs but also accurately identifies fruit types.

References

[1]  Yu, Y., Liu, Y., Li, Y., Xu, C. and Li, Y. (2024) Object Detection Algorithm for Citrus Fruits Based on Improved YOLOv5 Model. Agriculture, 14, Article 1798.
https://doi.org/10.3390/agriculture14101798
[2]  盛德庆. 基于深度学习的水果采摘机器人目标识别定位研究[D]: [硕士学位论文]. 吉林: 吉林化工学院, 2024.
[3]  罗家梅. 改进YOLOv5的水果品质检测与分类方法研究[D]: [硕士学位论文]. 赣州: 赣南师范大学, 2023.
[4]  洪馨. 基于改进型残差网络的水果品种分类方法研究[D]: [硕士学位论文]. 南昌: 南昌工程学院, 2023.
[5]  Al-Nawah, Mohammed. 基于神经网络的蔬菜水果识别和价格评估方法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2023.
[6]  郑浩. 基于深度学习的水果识别与分割技术研究[D]: [硕士学位论文]. 西安: 西安工业大学, 2023.
[7]  姚猛. 基于TOF相机的水蜜桃检测与抓取方法研究[D]: [硕士学位论文]. 无锡: 江南大学, 2023.
[8]  Fu, Y., Li, W., Li, G., Dong, Y., Wang, S., Zhang, Q., et al. (2024) Multi-Stage Tomato Fruit Recognition Method Based on Improved YOLOv8. Frontiers in Plant Science, 15, Article 1447263.
https://doi.org/10.3389/fpls.2024.1447263
[9]  Shi, Y., Qing, S., Zhao, L., Wang, F., Yuwen, X. and Qu, M. (2024) YOLO-Peach: A High-Performance Lightweight YOLOv8s-Based Model for Accurate Recognition and Enumeration of Peach Seedling Fruits. Agronomy, 14, Article 1628.
https://doi.org/10.3390/agronomy14081628
[10]  Xiao, X., Wang, Y., Zhou, B. and Jiang, Y. (2024) Flexible Hand Claw Picking Method for Citrus-Picking Robot Based on Target Fruit Recognition. Agriculture, 14, Article 1227.
https://doi.org/10.3390/agriculture14081227

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133