全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于Lifelog的隐私保护模型
A Privacy Protection Model Based on Lifelog

DOI: 10.12677/csa.2025.151013, PP. 126-135

Keywords: Lifelog,隐私保护,隐私策略,数据公开
Lifelog
, Privacy Protection, Privacy Strategy, Data Public

Full-Text   Cite this paper   Add to My Lib

Abstract:

隐私问题一直是Lifelog研究领域的热点问题之一。然而,由于目前数据集中存在隐私风险,这不但限制了研究者公开Lifelog数据集,也妨碍了研究者之间分享他们的数据集及研究成果。随着可穿戴设备和智能手机的广泛应用,Lifelog研究进入了一个新的阶段,其数据类型也变得愈发丰富,通常涵盖GPS、视频、图片、文本、语音等多种形式。针对目前多种数据格式的Lifelog数据集,我们提出了一个LPPM (Lifelog Privacy Protection Model)隐私保护模型。针对不同的数据类型,该模型可以选择不同的隐私策略。同时该模型还提出了一种基于场景的图片隐私策略SPP (Scene-Based Privacy Protection),该策略将首先预测Lifelog图片的场景,然后根据场景选取不同的隐私保护方法。我们在LiuLifelog数据集上对提出的模型进行了验证,通过LPPM模型对数据集的处理,我们认为我们的Lifelog数据集达到了可公开的程度,图片中大多数隐私被很好地掩盖了,这进一步说明我们提出的模型方法是有效的。
Privacy issues have always been a hot topic in the field of Lifelog research. However, due to the current privacy risks present in datasets, researchers are not only limited in publicly sharing Lifelog datasets but also hindered in sharing their datasets and research findings among themselves. With the widespread adoption of wearable devices and smartphones, Lifelog research has entered a new stage, and the data types have become increasingly rich, typically encompassing various forms such as GPS, video, images, text, and audio. In response to the current multi-format Lifelog datasets, we propose an LPPM (Lifelog Privacy Protection Model) privacy protection model. For different data types, this model can choose different privacy strategies. Moreover, the model proposes a scene-based image privacy strategy called SPP (Scene-based Privacy Protection), which will first predict the scenes of Lifelog images and then select different privacy protection methods based on the scenes. We validated the proposed model on the LiuLifelog dataset. Through the processing of the dataset using the LPPM model, we believe our Lifelog dataset has reached a publishable level, with most privacy in the images well obscured. This further demonstrates the effectiveness of our proposed model and method.

References

[1]  Rawassizadeh, R. (2012) Towards Sharing Life-Log Information with Society. Behaviour & Information Technology, 31, 1057-1067.
https://doi.org/10.1080/0144929x.2010.510208
[2]  Wolf, K., Schmidt, A., Bexheti, A. and Langheinrich, M. (2014) Lifelogging: You’re Wearing a Camera? IEEE Pervasive Computing, 13, 8-12.
https://doi.org/10.1109/mprv.2014.53
[3]  Yen, A., Huang, H. and Chen, H. (2019) Personal Knowledge Base Construction from Text-Based Lifelogs. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, 21-25 July 2019, 185-194.
https://doi.org/10.1145/3331184.3331209
[4]  Rossetto, L., Inel, O., Lange, S., Ruosch, F., Wang, R. and Bernstein, A. (2023) Multi-Mode Clustering for Graph-Based Lifelog Retrieval. Proceedings of the 6th Annual ACM Lifelog Search Challenge, New York, 12-15 June 2023, 36-40.
https://doi.org/10.1145/3592573.3593102
[5]  Climent-Pérez, P., Spinsante, S., Mihailidis, A. and Florez-Revuelta, F. (2020) A Review on Video-Based Active and Assisted Living Technologies for Automated Lifelogging. Expert Systems with Applications, 139, Article 112847.
https://doi.org/10.1016/j.eswa.2019.112847
[6]  Ziaei, A., Sangwan, A., Kaushik, L. and Hansen, J.H.L. (2015) Prof-Life-Log: Analysis and Classification of Activities in Daily Audio Streams. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, 19-24 April 2015, 4719-4723.
https://doi.org/10.1109/icassp.2015.7178866
[7]  Liu, G., Rehman, M.U. and Wu, Y. (2021) Toward Storytelling from Personal Informative Lifelogging. Multimedia Tools and Applications, 80, 19649-19673.
https://doi.org/10.1007/s11042-020-10453-z
[8]  Liu, G., Zheng, Q., Niu, S. and Ma, J. (2024) Research and Application of the Global Positioning System (GPS) Clustering Algorithm Based on Multilevel Functions. Journal of Computational Methods in Sciences and Engineering, 24, 357-368.
https://doi.org/10.3233/jcm-237061
[9]  Gurrin, C., Smeaton, A.F. and Doherty, A.R. (2014) Life-Logging: Personal Big Data. Foundations and Trends in Information Retrieval, 8, 1-125.
https://doi.org/10.1561/1500000033
[10]  Spiess, F., Gasser, R., Heller, S., Rossetto, L., Sauter, L., van Zanten, M., et al. (2021) Exploring Intuitive Lifelog Retrieval and Interaction Modes in Virtual Reality with vitrivr-VR. Proceedings of the 4th Annual on Lifelog Search Challenge, Taipei, 21 August 2021, 17-22.
https://doi.org/10.1145/3463948.3469061
[11]  Ninh, V.T., Le, T.K., Zhou, L., Piras, L., Riegler, M.A., Halvorsen, P., et al. (2020) Overview of Image CLEF Lifelog 2020: Lifelog Moment Retrieval and Sport Performance Lifelog. 2020 CEUR Workshop Proceedings, Luxembourg, 3-4 December 2020, Article 2096.
[12]  Liu, G., Rehman, M.U. and Wu, Y. (2021) Personal Trajectory Analysis Based on Informative Lifelogging. Multimedia Tools and Applications, 80, 22177-22191.
https://doi.org/10.1007/s11042-021-10755-w
[13]  Duy Dinh, T., Nguyen, D. and Tran, M. (2018) Social Relation Trait Discovery from Visual Lifelog Data with Facial Multi-Attribute Framework. Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods, Madeira, 16-18 January 2018, 665-674.
https://doi.org/10.5220/0006749206650674
[14]  Mafrur, R., Nugraha, I.G.D. and Choi, D. (2015) Modeling and Discovering Human Behavior from Smartphone Sensing Life-Log Data for Identification Purpose. Human-Centric Computing and Information Sciences, 5, Article No. 31.
https://doi.org/10.1186/s13673-015-0049-7
[15]  Chung, S., Jeong, C.Y., Lim, J.M., Lim, J., Noh, K.J., Kim, G., et al. (2021) Real-World Multimodal Lifelog Dataset for Human Behavior Study. ETRI Journal, 44, 426-437.
https://doi.org/10.4218/etrij.2020-0446
[16]  Kim, J.W., Lim, J.H., Moon, S.M. and Jang, B. (2019) Collecting Health Lifelog Data from Smartwatch Users in a Privacy-Preserving Manner. IEEE Transactions on Consumer Electronics, 65, 369-378.
https://doi.org/10.1109/tce.2019.2924466
[17]  Jalal, A., Quaid, M.A.K., Tahir, S.B.U.D. and Kim, K. (2020) A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems. Sensors, 20, Article 6670.
https://doi.org/10.3390/s20226670
[18]  Ksibi, A., Alluhaidan, A.S.D., Salhi, A. and El-Rahman, S.A. (2021) Overview of Lifelogging: Current Challenges and Advances. IEEE Access, 9, 62630-62641.
https://doi.org/10.1109/access.2021.3073469
[19]  Jacquemard, T., Novitzky, P., O’Brolcháin, F., Smeaton, A.F. and Gordijn, B. (2013) Challenges and Opportunities of Lifelog Technologies: A Literature Review and Critical Analysis. Science and Engineering Ethics, 20, 379-409.
https://doi.org/10.1007/s11948-013-9456-1
[20]  Ahmad, I., Farzan, R., Kapadia, A. and Lee, A.J. (2020) Tangible Privacy. Proceedings of the ACM on Human-Computer Interaction, 4, 1-28.
https://doi.org/10.1145/3415187
[21]  Elagroudy, P., Khamis, M., Mathis, F., Irmscher, D., Sood, E., Bulling, A., et al. (2023) Impact of Privacy Protection Methods of Lifelogs on Remembered Memories. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, 23-28 April 2023, 1-10.
https://doi.org/10.1145/3544548.3581565
[22]  Price, B.A., Stuart, A., Calikli, G., Mccormick, C., Mehta, V., Hutton, L., et al. (2017) Logging You, Logging Me. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1, 1-18.
https://doi.org/10.1145/3090087
[23]  Yen, A., Huang, H. and Chen, H. (2021) Ten Questions in Lifelog Mining and Information Recall. Proceedings of the 2021 International Conference on Multimedia Retrieval, Taipei, 21-24 August 2021, 511-518.
https://doi.org/10.1145/3460426.3463607
[24]  Ferdous, M.S., Chowdhury, S. and Jose, J.M. (2016) Privacy Threat Model in Lifelogging. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, 12-16 September 2016, 576-581.
https://doi.org/10.1145/2968219.2968324
[25]  Gurrin, C., Albatal, R., Joho, H. and Ishii, K. (2014) Digital Enlightenment Yearbook 2014. IOS Press, 49-73.
[26]  Gupta, R., Crane, M. and Gurrin, C. (2020) Considerations on Privacy in the Era of Digitally Logged Lives. Online Information Review, 45, 278-296.
https://doi.org/10.1108/oir-04-2018-0119
[27]  Steil, J., Koelle, M., Heuten, W., Boll, S. and Bulling, A. (2019) PrivacEye: Privacy-Preserving Head-Mounted Eye Tracking Using Egocentric Scene Image and Eye Movement Features. Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications, Colorado, 25-28 June 2019, 1-10.
https://doi.org/10.1145/3314111.3319913
[28]  Chowdhury, S., Ferdous, M.S. and Jose, J.M. (2016) Exploring Lifelog Sharing and Privacy. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, 12-16 September 2016, 553-558.
https://doi.org/10.1145/2968219.2968320
[29]  Hoyle, R., Templeman, R., Anthony, D., Crandall, D. and Kapadia, A. (2015) Sensitive Lifelogs. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, 18-23 April 2015, 1645-1648.
https://doi.org/10.1145/2702123.2702183
[30]  Chertchom, P., Tanimoto, S., Ohba, H., Kohnosu, T., Kobayashi, T., Sato, H., et al. (2017) A Lifelog Data Portfolio for Privacy Protection Based on Dynamic Data Attributes in a Lifelog Service. In: Studies in Computational Intelligence, Springer, 107-120.
https://doi.org/10.1007/978-3-319-62048-0_8
[31]  Kim, J.W., Moon, S., Kang, S. and Jang, B. (2020) Effective Privacy-Preserving Collection of Health Data from a User’s Wearable Device. Applied Sciences, 10, Article 6396.
https://doi.org/10.3390/app10186396

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133