|
Material Sciences 2025
基于系统论的可持续材料选择与低碳家具设计研究
|
Abstract:
本文系统研究了可持续材料选择与低碳家具设计,旨在响应全球环境问题的挑战和实现联合国可持续发展目标(SDGs)以及中国的“双碳”目标。文章从系统论的角度出发,探讨了低碳设计和系统设计的概念,分析了减量化设计理念、材料减量化设计、回收与循环利用等低碳家具设计策略,并从系统论的角度解析了基于材料可持续的家具设计策略。研究强调了整体性、相关性、动态性、目的性和层次性在设计过程中的重要性,并提出了具体的实施细则和评估体系。通过综合考虑家具的生命周期、设计与环境因素的相关性、适应变化的动态环境和需求、追求多重价值和目标的平衡,以及建立全局视野和合作伙伴关系,本文为可持续发展领域提供了一些见解和方法。研究旨在促进材料可持续的家具设计实践,为实现环境、经济和社会的协调发展贡献绵薄之力,并探索该领域的潜在创新路径。
This article systematically investigates sustainable material selection and low-carbon furniture design, aiming to respond to global environmental challenges and achieve the United Nations Sustainable Development Goals (SDGs) as well as China’s “dual carbon” targets. From a systems theory perspective, the paper explores the concepts of low-carbon design and systems design, analyzes strategies for low-carbon furniture design, such as reduction-oriented design, material reduction design, and recycling and reuse, and provides a systems-based analysis of material sustainability in furniture design strategies. The research emphasizes the importance of holism, relevance, dynamics, purpose, and hierarchy in the design process, and proposes specific implementation details and evaluation systems. By comprehensively considering the furniture’s lifecycle, the correlation between design and environmental factors, the dynamic environment and changing demands, balancing multiple values and objectives, and establishing a global perspective and partnerships, this study provides insights and methods for the field of sustainable development. The research aims to promote sustainable material-based furniture design practices, contribute to the coordinated development of environmental, economic, and social factors, and explore potential innovative paths in this field.
[1] | Opoku, A. (2016) SDG2030: A Sustainable Built Environment’s Role in Achieving the Post-2015 United Nations Sustainable Development Goals. Proceedings of the 32nd Annual ARCOM Conference, Manchester, 5-7 September 2016, 1101-1110. |
[2] | Xu, X. (2024) Assessing China’s Path to Carbon Neutrality: Analyzing Historical and Projected Electricity-Related Carbon Emissions in the Context of the Dual Carbon Plan. E3S Web of Conferences, 528, Article 03017. https://doi.org/10.1051/e3sconf/202452803017 |
[3] | Asman, N.S.A., Raymond, M.B., Mohamad, H.M., et al. (2023) Life Cycle Assessment of Plastic Waste into Furniture Using Open LCA Software. Transactions on Science and Technology, 10, 88-94. |
[4] | 张付英, 段晶莹, 陈建垒, 等. 面向产品可持续设计的关键功能模块识别方法[J]. 计算机集成制造系统, 2019, 25(7): 1828-1838. |
[5] | 康欢, 曹国忠, 赵超凡. 基于产品生命周期的多功能家具设计[J]. 包装工程, 2018, 39(14): 39-43. |
[6] | 张威. 美国环境新闻的轨迹及其先锋人物(1844-1966) [J]. 国际新闻界, 2004(3): 25-29. |
[7] | 钱学森, 于景元, 戴汝为. 一个科学新领域——开放的复杂巨系统及其方法论[J]. 自然杂志, 1990(1): 3-10, 64. |
[8] | 刘娟. 系统论在工业设计领域的应用与研究[J]. 艺术科技, 2016, 29(1): 290. |
[9] | Muthu, S.S. (2014) Estimating the Overall Environmental Impact of Textile Processing: Life Cycle Assessment (LCA) of Textile Products. In: Muthu, S.S., Ed., Assessing the Environmental Impact of Textiles and the Clothing Supply Chain, Woodhead Publishing, 105-131. https://doi.org/10.1533/9781782421122.105 |
[10] | Pawelzik, P., Carus, M., Hotchkiss, J., Narayan, R., Selke, S., Wellisch, M., et al. (2013) Critical Aspects in the Life Cycle Assessment (LCA) of Bio-Based Materials—Reviewing Methodologies and Deriving Recommendations. Resources, Conservation and Recycling, 73, 211-228. https://doi.org/10.1016/j.resconrec.2013.02.006 |
[11] | Lewis, T., Liu, F. and Song, J. (2014) A Dynamic Mechanism for Achieving Sustainable Quality Supply. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2513103 |
[12] | Blagoeva, D., Alves, D.P., Marmier, A., et al. (2016) Assessment of Potential Bottlenecks Along the Materials Supply Chain for the Future Deployment of Low-Carbon Energy and Transport Technologies in the EU: Wind Power, Photovoltaic and Electric Vehicles Technologies, Time Frame: 2015-2030. Office of the European Union. https://doi.org/10.2790/198578 |
[13] | Wang, S. (2022) Application of Product Life Cycle Management Method in Furniture Modular Design. Mathematical Problems in Engineering, 2022, Article ID: 7192152. https://doi.org/10.1155/2022/7192152 |
[14] | Kumi, L. and Jeong, J. (2023) Optimization Model for Selecting Optimal Prefabricated Column Design Considering Environmental Impacts and Costs Using Genetic Algorithm. Journal of Cleaner Production, 417, Article 137995. https://doi.org/10.1016/j.jclepro.2023.137995 |
[15] | da Silva Cavalcante, R.L. (2024) Integrating Sustainability in Furniture Design: A Holistic Analysis of Materials, Manufacturing Processes, and Circular Economy. Revista de Gestão Social e Ambiental, 18, e04570. https://doi.org/10.24857/rgsa.v18n4-035 |
[16] | Duflou, J.R., Sutherland, J.W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., et al. (2012) Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach. CIRP Annals, 61, 587-609. https://doi.org/10.1016/j.cirp.2012.05.002 |
[17] | 向东, 段广洪, 汪劲松, 等. 基于产品系统的产品绿色度综合评价[J]. 计算机集成制造系统, 2001, 7(8): 12-16. |
[18] | Willskytt, S. and Brambila-Macias, S.A. (2020) Design Guidelines Developed from Environmental Assessments: A Design Tool for Resource-Efficient Products. Sustainability, 12, Article 4953. https://doi.org/10.3390/su12124953 |
[19] | 闫志国, 吴元欣, 袁华, 等. 化工产品的绿色设计及其集成评价方法的研究[J]. 化学与生物工程, 2006, 23(8): 1-3, 10. |
[20] | Cordova, M. and Coronado, F. (2020) Supply Chain Innovation and Sustainability Frontiers: A Balanced Scorecard Perspective. In: Park, S.H., Gonzalez-Perez, M.A. and Floriani, D.E., Eds., The Palgrave Handbook of Corporate Sustainability in the Digital Era, Springer International Publishing, 479-501. https://doi.org/10.1007/978-3-030-42412-1_24 |
[21] | Adams, R., Jeanrenaud, S., Bessant, J., et al. (2012) Innovating for Sustainability. A Systematic Review of the Body of Knowledge. Network for Business Sustainability. |