|
Pure Mathematics 2025
Pm□Pn的奇染色和正常无冲突染色
|
Abstract:
图的染色理论在模式识别、生物信息、社交网络和电力网络上有重要的应用。对于图 的一个点染色 ,若满足对任意非孤立点 ,都存在 使得 是一个奇数,则称 是图 的一个奇 -染色。特别地,若 ,则称 是图 的一个正常无冲突 -染色。图 的奇(正常无冲突)色数是使图 有一个奇(正常无冲突) -染色的 的最小值,记作
[1] | Montgomery, B. (2001) Dynamic Coloring of Graph. West Virginia University. |
[2] | Petruševski, M. and Škrekovski, R. (2022) Colorings with Neighborhood Parity Condition. Discrete Applied Mathematics, 321, 385-391. https://doi.org/10.1016/j.dam.2022.07.018 |
[3] | Fabrici, I., Lužar, B., Rindošová, S. and Soták, R. (2023) Proper Conflict-Free and Unique-Maximum Colorings of Planar Graphs with Respect to Neighborhoods. Discrete Applied Mathematics, 324, 80-92. https://doi.org/10.1016/j.dam.2022.09.011 |
[4] | Caro, Y., Petruševski, M. and Škrekovski, R. (2022) Remarks on Odd Colorings of Graphs. Discrete Applied Mathematics, 321, 392-401. https://doi.org/10.1016/j.dam.2022.07.024 |
[5] | Caro, Y., Petruševski, M. and Škrekovski, R. (2023) Remarks on Proper Conflict-Free Colorings of Graphs. Discrete Mathematics, 346, Article ID: 113221. https://doi.org/10.1016/j.disc.2022.113221 |
[6] | Lai, H., Lin, J., Montgomery, B., Shui, T. and Fan, S. (2006) Conditional Colorings of Graphs. Discrete Mathematics, 306, 1997-2004. https://doi.org/10.1016/j.disc.2006.03.052 |
[7] | Petr, J. and Portier, J. (2023) The Odd Chromatic Number of a Planar Graph Is at Most 8. Graphs and Combinatorics, 39, Article No. 28. https://doi.org/10.1007/s00373-023-02617-z |
[8] | Cho, E., Choi, I., Kwon, H. and Park, B. (2023) Odd Coloring of Sparse Graphs and Planar Graphs. Discrete Mathematics, 346, Article ID: 113305. https://doi.org/10.1016/j.disc.2022.113305 |
[9] | Cho, E., Choi, I., Kwon, H. and Park, B. (2025) Proper Conflict-Free Coloring of Sparse Graphs. Discrete Applied Mathematics, 362, 34-42. https://doi.org/10.1016/j.dam.2024.11.016 |
[10] | Qi, M. and Zhang, X. (2022) Odd Coloring of Two Subclasses of Planar Graphs. arXiv: 2205.09317. |
[11] | Tian, F. and Yin, Y. (2022) Every Toroidal Graph without 3-Cycles Is Odd 7-Colorable. arXiv: 2206.06052. |
[12] | Tian, F. and Yin, Y. (2022) Every Toroidal Graphs without Adjacent Triangles Is Odd 8-Colorable. arXiv: 2206.07629. |
[13] | Tian, F. and Yin, Y. (2023) The Odd Chromatic Number of a Toroidal Graph Is at Most 9. Information Processing Letters, 182, Article ID: 106384. https://doi.org/10.1016/j.ipl.2023.106384 |
[14] | Akbari, S., Ghanbari, M. and Jahanbekam, S. (2014) On the Dynamic Coloring of Cartesian Product Graphs. Australian-Canadian Journal of Combinatorics, 114, 161-168. |