全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PmPn的奇染色和正常无冲突染色
Odd Coloring and Proper Conflict-Free Coloring of PmPn

DOI: 10.12677/pm.2025.151024, PP. 211-215

Keywords: 路,笛卡尔乘积图,奇染色,正常无冲突染色
Path
, Cartesian Product Graph, Odd Coloring, Proper Conflict-Free Coloring

Full-Text   Cite this paper   Add to My Lib

Abstract:

图的染色理论在模式识别、生物信息、社交网络和电力网络上有重要的应用。对于图 G 的一个点染色 φ:V( G ){ 1,2,,k } ,若满足对任意非孤立点 vV( G ) ,都存在 c{ 1,2,,k } 使得 | φ 1 ( c )N( v ) | 是一个奇数,则称 φ 是图 G 的一个奇 k -染色。特别地,若 | φ 1 ( c )N( v ) |=1 ,则称 φ 是图 G 的一个正常无冲突 k -染色。图 G 的奇(正常无冲突)色数是使图 G 有一个奇(正常无冲突) k -染色的 k 的最小值,记作 χ o ( G )(

References

[1]  Montgomery, B. (2001) Dynamic Coloring of Graph. West Virginia University.
[2]  Petruševski, M. and Škrekovski, R. (2022) Colorings with Neighborhood Parity Condition. Discrete Applied Mathematics, 321, 385-391.
https://doi.org/10.1016/j.dam.2022.07.018
[3]  Fabrici, I., Lužar, B., Rindošová, S. and Soták, R. (2023) Proper Conflict-Free and Unique-Maximum Colorings of Planar Graphs with Respect to Neighborhoods. Discrete Applied Mathematics, 324, 80-92.
https://doi.org/10.1016/j.dam.2022.09.011
[4]  Caro, Y., Petruševski, M. and Škrekovski, R. (2022) Remarks on Odd Colorings of Graphs. Discrete Applied Mathematics, 321, 392-401.
https://doi.org/10.1016/j.dam.2022.07.024
[5]  Caro, Y., Petruševski, M. and Škrekovski, R. (2023) Remarks on Proper Conflict-Free Colorings of Graphs. Discrete Mathematics, 346, Article ID: 113221.
https://doi.org/10.1016/j.disc.2022.113221
[6]  Lai, H., Lin, J., Montgomery, B., Shui, T. and Fan, S. (2006) Conditional Colorings of Graphs. Discrete Mathematics, 306, 1997-2004.
https://doi.org/10.1016/j.disc.2006.03.052
[7]  Petr, J. and Portier, J. (2023) The Odd Chromatic Number of a Planar Graph Is at Most 8. Graphs and Combinatorics, 39, Article No. 28.
https://doi.org/10.1007/s00373-023-02617-z
[8]  Cho, E., Choi, I., Kwon, H. and Park, B. (2023) Odd Coloring of Sparse Graphs and Planar Graphs. Discrete Mathematics, 346, Article ID: 113305.
https://doi.org/10.1016/j.disc.2022.113305
[9]  Cho, E., Choi, I., Kwon, H. and Park, B. (2025) Proper Conflict-Free Coloring of Sparse Graphs. Discrete Applied Mathematics, 362, 34-42.
https://doi.org/10.1016/j.dam.2024.11.016
[10]  Qi, M. and Zhang, X. (2022) Odd Coloring of Two Subclasses of Planar Graphs. arXiv: 2205.09317.
[11]  Tian, F. and Yin, Y. (2022) Every Toroidal Graph without 3-Cycles Is Odd 7-Colorable. arXiv: 2206.06052.
[12]  Tian, F. and Yin, Y. (2022) Every Toroidal Graphs without Adjacent Triangles Is Odd 8-Colorable. arXiv: 2206.07629.
[13]  Tian, F. and Yin, Y. (2023) The Odd Chromatic Number of a Toroidal Graph Is at Most 9. Information Processing Letters, 182, Article ID: 106384.
https://doi.org/10.1016/j.ipl.2023.106384
[14]  Akbari, S., Ghanbari, M. and Jahanbekam, S. (2014) On the Dynamic Coloring of Cartesian Product Graphs. Australian-Canadian Journal of Combinatorics, 114, 161-168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133