全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Revolutionizing Agro-Food Waste Management: Real-Time Solutions through IoT and Big Data Integration

DOI: 10.4236/vp.2025.111003, PP. 17-36

Keywords: Agro-Food, Big Data, IoT, Machine Learning, Waste Management

Full-Text   Cite this paper   Add to My Lib

Abstract:

Globally, approximately one-third of the total food produced is wasted. The environmental effect of such wastage is the contribution to greenhouse gas emissions, and economically, money that could have been reinvested in the economy is lost. This research showcases the ability of IoT devices to gather data on wastage and management as they happen, as well as big data analytics in facilitating data acquisition for enhanced decision-making. The research proposal seeks to show how the use of these technologies can support waste minimization, efficiently utilize resources, and promote sustainability in the agro-food chain. Thus, a literature survey will be applied to outline the methodologies currently in use, the holes in current practice, and new ideas on how to incorporate IoT and big data in waste management. Furthermore, several case studies ‘success stories’ are highlighted to explain and quantify an actual application of these technologies in different sectors of the agro-food chain with tangible results in terms of reduction of the number of wastes and gains in efficiency. The application of Internet of Things (IoT) technologies and big data analytics for real-time handling of agro-food waste is a major problem in the agro-food sector. The conclusions highlight the positive effect of IoT and big data in tackling agro-food waste; at the same time, they give practical suggestions for the key players throughout the supply chain. Thus, our study gives insights into a shift in the management of agro-food waste through efficient technology and rallying policymakers, industry experts, and researchers to fully capture technological improvements for development.

References

[1]  Ahmad Tarmizi, H., Kamarulzaman, N. H., Abd Rahman, A., & Atan, R. (2020). Adoption of Internet of Things among Malaysian Halal Agro-Food SMEs and Its Challenges. Food Research, 4, 256-265.
https://doi.org/10.26656/fr.2017.4(s1).s26
[2]  Ahmadzadeh, S., Ajmal, T., Ramanathan, R., & Duan, Y. (2023). A Comprehensive Review on Food Waste Reduction Based on IoT and Big Data Technologies. Sustainability, 15, Article 3482.
https://doi.org/10.3390/su15043482
[3]  Aït-Kaddour, A., Hassoun, A., Tarchi, I., Loudiyi, M., Boukria, O., Cahyana, Y. et al. (2024). Transforming Plant-Based Waste and By-Products into Valuable Products Using Various “Food Industry 4.0” Enabling Technologies: A Literature Review. Science of the Total Environment, 955, Article ID: 176872.
https://doi.org/10.1016/j.scitotenv.2024.176872
[4]  Arshadi, M., Attard, T. M., Lukasik, R. M., Brncic, M., da Costa Lopes, A. M., Finell, M. et al. (2016). Pre-Treatment and Extraction Techniques for Recovery of Added Value Compounds from Wastes Throughout the Agri-Food Chain. Green Chemistry, 18, 6160-6204.
https://doi.org/10.1039/c6gc01389a
[5]  Aziz, M. M., Rahaman, M. M., Bhuiyan, M. M. R., & Islam, M. R. (2023). Integrating Sustainable IT Solutions for Long-Term Business Growth and Development. Journal of Business and Management Studies, 5, 152-159.
https://doi.org/10.32996/jbms.2023.5.6.12
[6]  Belaud, J., Prioux, N., Vialle, C., & Sablayrolles, C. (2019). Big Data for Agri-Food 4.0: Application to Sustainability Management for By-Products Supply Chain. Computers in Industry, 111, 41-50.
https://doi.org/10.1016/j.compind.2019.06.006
[7]  Berenguer, C. V., Andrade, C., Pereira, J. A. M., Perestrelo, R., & Câmara, J. S. (2023). Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes, 11, Article 20.
https://doi.org/10.3390/pr11010020
[8]  Bhuiyan, M. M. R., Rahaman, M. M., Aziz, M. M., Islam, M. R., & Das, K. (2023). Predictive Analytics in Plant Biotechnology: Using Data Science to Drive Crop Resilience and Productivity. Journal of Environmental and Agricultural Studies, 4, 77-84.
https://doi.org/10.32996/jeas.2024.4.3.11
[9]  Bijl, R., van der Meer, A., & Janssen, P. (2024). Precision Agriculture and IoT Applications in Waste Management: Insights from the Netherlands. Springer.
[10]  Cahyadi, E. R., Hidayati, N., Zahra, N., & Arif, C. (2024). Integrating Circular Economy Principles into Agri-Food Supply Chain Management: A Systematic Literature Review. Sustainability, 16, Article 7165.
https://doi.org/10.3390/su16167165
[11]  Caruso, M. C., Braghieri, A., Capece, A., Napolitano, F., Romano, P., Galgano, F. et al. (2019). Recent Updates on the Use of Agro-Food Waste for Biogas Production. Applied Sciences, 9, Article 1217.
https://doi.org/10.3390/app9061217
[12]  Das, S., Lee, S., Kumar, P., Kim, K., Lee, S. S., & Bhattacharya, S. S. (2019). Solid Waste Management: Scope and the Challenge of Sustainability. Journal of Cleaner Production, 228, 658-678.
https://doi.org/10.1016/j.jclepro.2019.04.323
[13]  El-Ramady, H., Brevik, E. C., Bayoumi, Y., Shalaby, T. A., El-Mahrouk, M. E., Taha, N. et al. (2022). An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus. Sustainability, 14, Article 15717.
https://doi.org/10.3390/su142315717
[14]  Engler, M. (2004). Designing Americas Waste Landscapes. JHU Press.
[15]  Fischer, M., & Lyon, S. (2021). IoT and Sustainability in Agro-Food Systems. Sustainability, 13, Article 12181.
[16]  Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y., Lee, K., & Tropsha, A. (2003). Rational Selection of Training and Test Sets for the Development of Validated QSAR Models. Journal of Computer-Aided Molecular Design, 17, 241-253.
https://doi.org/10.1023/a:1025386326946
[17]  Hannan, M. A., Abdulla Al Mamun, M., Hussain, A., Basri, H., & Begum, R. A. (2015). A Review on Technologies and Their Usage in Solid Waste Monitoring and Management Systems: Issues and Challenges. Waste Management, 43, 509-523.
https://doi.org/10.1016/j.wasman.2015.05.033
[18]  Henningsson, S., Hyde, K., Smith, A., & Campbell, M. (2004). The Value of Resource Efficiency in the Food Industry: A Waste Minimisation Project in East Anglia, UK. Journal of Cleaner Production, 12, 505-512.
https://doi.org/10.1016/s0959-6526(03)00104-5
[19]  Irani, Z., Sharif, A. M., Lee, H., Aktas, E., Topaloğlu, Z., van’t Wout, T. et al. (2018). Managing Food Security through Food Waste and Loss: Small Data to Big Data. Computers & Operations Research, 98, 367-383.
https://doi.org/10.1016/j.cor.2017.10.007
[20]  Islam, M. R., Aziz, M. M., Gonee Manik, M. M. T., ahman Bhuiyan, M. M. R., Noman, I. R., Rahaman, M. M. et al. (2024). Navigating the Digital Landscape: Integrating Advanced IT Solutions with Project Management Best Practices. ICRRD Quality Index Research Journal, 5, 159-173.
https://doi.org/10.53272/icrrd.v5i4.5
[21]  Joshi, L. M., Bharti, R. K., Singh, R., & Malik, P. K. (2022). Real Time Monitoring of Solid Waste with Customized Hardware and Internet of Things. Computers and Electrical Engineering, 102, Article ID: 108262.
https://doi.org/10.1016/j.compeleceng.2022.108262
[22]  Koroteev, M., Romanova, E., Korovin, D., Shevtsov, V., Feklin, V., Nikitin, P. et al. (2022). Optimization of Food Industry Production Using the Monte Carlo Simulation Method: A Case Study of a Meat Processing Plant. Informatics, 9, Article 5.
https://doi.org/10.3390/informatics9010005
[23]  Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine Learning: A Review of Classification and Combining Techniques. Artificial Intelligence Review, 26, 159-190.
https://doi.org/10.1007/s10462-007-9052-3
[24]  Kumar, S., & Singh, R. (2024). The Role of IoT in Advancing Agricultural Waste Management. Springer.
[25]  Lakhouit, A., Shaban, M., Alatawi, A., Abbas, S. Y. H., Asiri, E., Al Juhni, T. et al. (2023). Machine-learning Approaches in Geo-Environmental Engineering: Exploring Smart Solid Waste Management. Journal of Environmental Management, 330, Article ID: 117174.
https://doi.org/10.1016/j.jenvman.2022.117174
[26]  Li, J., Wang, X., & Zhao, L. (2023). Digital Technology Applications in China’s Agro-Food Supply Chain Sustainability. Agriculture, 14, Article 900.
[27]  Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A Survey of Deep Neural Network Architectures and Their Applications. Neurocomputing, 234, 11-26.
https://doi.org/10.1016/j.neucom.2016.12.038
[28]  Montecinos, J., Ouhimmou, M., Chauhan, S., & Paquet, M. (2018). Forecasting Multiple Waste Collecting Sites for the Agro-Food Industry. Journal of Cleaner Production, 187, 932-939.
https://doi.org/10.1016/j.jclepro.2018.03.127
[29]  Munir, M. T., Li, B., & Naqvi, M. (2023). Revolutionizing Municipal Solid Waste Management (MSWM) with Machine Learning as a Clean Resource: Opportunities, Challenges and Solutions. Fuel, 348, Article ID: 128548.
https://doi.org/10.1016/j.fuel.2023.128548
[30]  Oruganti, R. K., Biji, A. P., Lanuyanger, T., Show, P. L., Sriariyanun, M., Upadhyayula, V. K. K. et al. (2023). Artificial Intelligence and Machine Learning Tools for High-Performance Microalgal Wastewater Treatment and Algal Biorefinery: A Critical Review. Science of the Total Environment, 876, Article ID: 162797.
https://doi.org/10.1016/j.scitotenv.2023.162797
[31]  Pereira, J. L. S., Costa, T., Figueiredo, V., Marques, F., Perdigão, A., Brás, I. et al. (2024). Influence of Different Agro-Food Waste on Ammonia and Greenhouse Gas Emissions during Composting. Agronomy, 14, Article 220.
https://doi.org/10.3390/agronomy14010220
[32]  Procentese, A., Raganati, F., Olivieri, G., Russo, M. E., De La Feld, M., & Marzocchella, A. (2019). Agro Food Wastes and Innovative Pretreatments to Meet Biofuel Demand in Europe. Chemical Engineering & Technology, 42, 954-961.
https://doi.org/10.1002/ceat.201800459
[33]  Rahaman, M. M., Gonee Manik, M. M. T., Rahman Noman, I., Islam, M. R., Aziz, M. M., Rahman Bhuiyan, M. M. et al. (2024). Data Analytics for Sustainable Business: Practical Insights for Measuring and Growing Impact. ICRRD Quality Index Research Journal, 5, 110-125.
https://doi.org/10.53272/icrrd.v5i4.2
[34]  Rahaman, M. M., Rani, S., Islam, M. R., & Bhuiyan, M. M. R. (2023). Machine Learning in Business Analytics: Advancing Statistical Methods for Data-Driven Innovation. Journal of Computer Science and Technology Studies, 5, 104-111.
https://doi.org/10.32996/jcsts.2023.5.3.8
[35]  Rajvanshi, S., Kaur, G., Dhatwalia, A., Arunima, Singla, A., & Bhasin, A. (2023). Research on Problems and Solutions of Overfitting in Machine Learning. In K. C., Santosh, S. K., Sood, H. M., Pandey, & C. Virmani (Eds.), Advances in Artificial-Business Analytics and Quantum Machine Learning (pp. 637-651). Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-2508-3_47
[36]  Rejeb, A., Rejeb, K., & Zailani, S. (2021). Big Data for Sustainable Agri-Food Supply Chains: A Review and Future Research Perspectives. Journal of Data, Information and Management, 3, 167-182.
https://doi.org/10.1007/s42488-021-00045-3
[37]  Sharma, M. K., Dhaka, V. S., & Shekhawat, R. S. (2022). Intelligent Agro-Food Chain Supply. In P. K. Pattnaik, R. Kumar, & S. Pal (eds.), Internet of Things and Analytics for Agriculture, Volume 3 (pp. 65-91). Springer Singapore.
https://doi.org/10.1007/978-981-16-6210-2_4
[38]  Smith, A. L., Stadler, L. B., Love, N. G., & Raskin, L. (2022). Navigating Wastewater Energy Recovery Strategies: A Life Cycle Comparison of Anaerobic Membrane Bioreactor and Conventional Treatment Systems with Anaerobic Digestion. Environmental Science & Technology, 48, 5972-5981.
https://doi.org/10.1021/es5006169
[39]  Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Nguyen Vo, D., & Rangasamy, G. (2023). Digitalization of the Agro-Food Sector for Achieving Sustainable Development Goals: A Review. Sustainable Food Technology, 1, 783-802.
https://doi.org/10.1039/d3fb00124e
[40]  Sridhar, P., Vishnu, C. R., & Sridharan, R. (2021). Simulation of Inventory Management Systems in Retail Stores: A Case Study. Materials Today: Proceedings, 47, 5130-5134.
https://doi.org/10.1016/j.matpr.2021.05.314
[41]  Trevisan, C., & Formentini, M. (2023). Digital Technologies for Food Loss and Waste Prevention and Reduction in Agri-Food Supply Chains: A Systematic Literature Review and Research Agenda. IEEE Transactions on Engineering Management, 71, 12326-12345.
https://doi.org/10.1109/tem.2023.3273110
[42]  Tummers, J., Kassahun, A., & Tekinerdogan, B. (2021). Reference Architecture Design for Farm Management Information Systems: A Multi-Case Study Approach. Precision Agriculture, 22, 22-50.
https://doi.org/10.1007/s11119-020-09728-0
[43]  UNEP (2024). Food Waste Index Report.
https://www.unep.org/resources/publication/food-waste-index-report-2024
[44]  Wan, C., Shen, G. Q., & Choi, S. (2019). Waste Management Strategies for Sustainable Development. In W. Leal Filho (Ed.), Encyclopedia of Sustainability in Higher Education (pp. 2020-2028). Springer International Publishing.
https://doi.org/10.1007/978-3-030-11352-0_194
[45]  Wang, G., Li, S., Yi, Y., Wang, Y., & Shin, C. (2024). Digital Technology Increases the Sustainability of Cross-Border Agro-Food Supply Chains: A Review. Agriculture, 14, Article 900.
https://doi.org/10.3390/agriculture14060900
[46]  Zhang, Q., & Zhang, H. (2024). Assessing Agri-Food Waste Valorization Challenges and Solutions Considering Smart Technologies: An Integrated Fermatean Fuzzy Multi-Criteria Decision-Making Approach. Sustainability, 16, Article 6169.
https://doi.org/10.3390/su16146169

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133