全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sub-Atom Particles and Magnetic Monopoles Spin Ice Condensed in Higgs-Field Portals

DOI: 10.4236/jamp.2025.131016, PP. 348-364

Keywords: Magnetic Monopoles, Higgs-Field, Magnetic Spin

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study of magnetic monopoles continues to be a prominent and captivating topic in physics, particularly within the realm of physical materials. Recently, K. C. Tan, Hariom Jani, Michael H?gen, and their collaborators (2023) reported groundbreaking discoveries, marking significant progress in this field. However, a sense of dissatisfaction persists among researchers regarding the current state of advancement. To address this, we propose a novel theoretical framework that explores magnetic monopoles through the lens of Higgs field portals. Our findings indicate that the spin of the magnetic monopole, s = 1, is intrinsically linked to the fundamental expression governing its behavior, with the two aspects being inseparable in practical terms. This theory offers a deeper understanding of the inherent nature of magnetic monopoles and provides a foundation for further exploration.

References

[1]  Dirac, P.A.M. (1931) Quantised Singularities in the Electromagnetic Field. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 133, 60-72.
[2]  Price, P.B., Shirk, E.K., Osborne, W.Z. and Pinsky, L.S. (1975) Evidence for Detection of a Moving Magnetic Monopole. Physical Review Letters, 35, 487-490.
https://doi.org/10.1103/physrevlett.35.487
[3]  Cabrera, B. (1982) First Results from a Superconductive Detector for Moving Magnetic Monopoles. Physical Review Letters, 48, 1378-1381.
https://doi.org/10.1103/physrevlett.48.1378
[4]  Heninger, J.M. and Morrison, P.J. (2020) Hamiltonian Nature of Monopole Dynamics. Physics Letters A, 384, Article ID: 126101.
https://doi.org/10.1016/j.physleta.2019.126101
[5]  Polchinski, J. (2004) Monopoles, Duality, and String Theory. International Journal of Modern Physics A, 19, 145-154.
https://doi.org/10.1142/s0217751x0401866x
[6]  Su, H.H. and Lee, P. (2024) On a Heuristic Point of View about the Generalization of Curie Law to Cosmic Higgs Fields with the Casimir Effect. Journal of Applied Mathematics and Physics, 12, 3135-3147.
https://doi.org/10.4236/jamp.2024.129188
[7]  (2013) Birth of a Higgs Boson. CERN Courier, 22.
[8]  Chang, L., Onoda, S., Su, Y., Kao, Y., Tsuei, K., Yasui, Y., et al. (2012) Higgs Transition from a Magnetic Coulomb Liquid to a Ferromagnet in Yb2Ti2O7. Nature Communications, 3, Article No. 991.
https://doi.org/10.1038/ncomms1989
[9]  Tan, A.K.C., Jani, H., Högen, M., Stefan, L., Castelnovo, C., Braund, D., et al. (2023) Revealing Emergent Magnetic Charge in an Antiferromagnet with Diamond Quantum Magnetometry. Nature Materials, 23, 205-211.
https://doi.org/10.1038/s41563-023-01737-4
[10]  Su, H.H. and Lee, P. (2024) A Model of Grand Unified Theory: Suggested Solution for CP-Violation Using Ideas of Phase Paths. Journal of High Energy Physics, Gravitation and Cosmology, 10, 1878-1902.
https://doi.org/10.4236/jhepgc.2024.104105
[11]  Gavela, M.B. (2019) Axion and ALP Couplings. Planck, Universidad Autónoma de Madrid and IFT.
[12]  Kohri, K. and Matsui, H. (2018) Electroweak Vacuum Instability and Renormalized Vacuum Field Fluctuations in Friedmann-Lemaitre-Robertson-Walker Background. Physical Review D, 98, Article ID: 103521.
https://doi.org/10.1103/physrevd.98.103521
[13]  Hooft, G. (1974) A Planar Diagram Theory for Strong Interactions. Nuclear Physics B, 72, 461-473.
https://doi.org/10.1016/0550-3213(74)90154-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133