Peste des Petits ruminants (PPR) is considered as one of the major constraints to the productivity of small ruminants in Sudan. Presently, control measures for PPR are primarily reliant on vaccination using an attenuated PPR strain Nigeria 75/1 that has been produced in monolayers of Vero cells grown in static flasks. This study investigates the potential for scaling up PPR vaccine production using roller bottle technology, a more advanced method. A live, homologous vaccine against PPR in sheep and goats was successfully produced on a large scale in roller culture bottles, with DMEM supplemented with ten percent fetal bovine serum serving as the growth medium. The cells were infected with a multiplicity of infection of 0.01, and the vaccine was harvested when the cytopathic effect reached 80%. The vaccine was then freeze-dried to preserve its stability. A series of tests were conducted to ensure the safety and quality of the vaccine. Using PCR, the identity of vaccine was confirmed. It was found to be safe in both single and 100-times dose inoculations in sheep, with the produced batches showing a high titre of 6.4 ± 0.11 log10 TCID50/ml. All batches met the criteria of sterility, passing tests for bacteria, fungi, and mycoplasma. Furthermore, the vaccine proved effective in small ruminants, with antibodies persisting for over a year post-vaccination. The residual moisture content remained below 2.5%, and the vaccine successfully passed vacuum testing. Stability tests indicated that the vaccine has a shelf-life of at least one year when stored at temperatures of 2?C - 8?C and ?20?C. These results demonstrate the potential for applying roller bottle culture technology to PPR vaccine production, significantly streamlining the existing process and enhancing its efficiency. Further research is warranted to address the economic analyses of adopting roller bottle technology with existing PPR control program.
References
[1]
Gibbs, P.J., Taylor, W.P., Lawman, M.J.P. and Bryant, J. (1979) Classification of Peste des Petits Ruminants Virus as the Fourth Member of the Genus Morbillivirus. Intervirology, 11, 268-274. https://doi.org/10.1159/000149044
Pope, R.A., Parida, S., Bailey, D., Brownlie, J., Barrett, T. and Banyard, A.C. (2013) Early Events Following Experimental Infection with Peste-Des-Petits Ruminants Virus Suggest Immune Cell Targeting. PLOS ONE, 8, e55830. https://doi.org/10.1371/journal.pone.0055830
[4]
Dou, Y., Liang, Z., Prajapati, M., Zhang, R., Li, Y. and Zhang, Z. (2020) Expanding Diversity of Susceptible Hosts in Peste des Petits Ruminants Virus Infection and Its Potential Mechanism Beyond. Frontiers in Veterinary Science, 7, Article 66. https://doi.org/10.3389/fvets.2020.00066
[5]
Roger, F., Diallo, A., Yigezu, L.M., Hurard, C., Libeau, G., Mebratu, G.Y. and Faye, B. (2000) Investigation of a New Pathological Condition of Camels in Ethiopia. Journal of Camel Practice and Research, 7, 163-166.
[6]
Khalafalla, A.I., Saeed, I.K., Ali, Y.H., Abdurrahman, M.B., Kwiatek, O., Libeau, G., u (2010) An Outbreak of Peste des Petits Ruminants (PPR) in Camels in the Sudan. Acta Tropica, 116, 161-165. https://doi.org/10.1016/j.actatropica.2010.08.002
[7]
Kumar, N., Maherchandani, S., Kashyap, S., Singh, S., Sharma, S., Chaubey, K., et al. (2014) Peste Des Petits Ruminants Virus Infection of Small Ruminants: A Comprehensive Review. Viruses, 6, 2287-2327. https://doi.org/10.3390/v6062287
[8]
Aguilar, X.F., Fine, A.E., Pruvot, M., Njeumi, F., Walzer, C., Kock, R., et al. (2018) PPR Virus Threatens Wildlife Conservation. Science, 362, 165-166. https://doi.org/10.1126/science.aav4096
[9]
Pruvot, M., Fine, A.E., Hollinger, C., Strindberg, S., Damdinjav, B., Buuveibaatar, B., et al. (2020) Outbreak of Peste des Petits Ruminants among Critically Endangered Mongolian Saiga and Other Wild Ungulates, Mongolia, 2016-2017. Emerging Infectious Diseases, 26, 51-62. https://doi.org/10.3201/eid2601.181998
[10]
Fine, A.E., Pruvot, M., Benfield, C.T.O., Caron, A., Cattoli, G., Chardonnet, P., et al. (2020) Eradication of Peste des Petits Ruminants Virus and the Wildlife-Livestock Interface. Frontiers in Veterinary Science, 7, Article 50. https://doi.org/10.3389/fvets.2020.00050
[11]
Munir, M. (2013) Role of Wild Small Ruminants in the Epidemiology of Peste des Petits Ruminants. Transboundary and Emerging Diseases, 61, 411-424. https://doi.org/10.1111/tbed.12052
[12]
Jones, B.A., Mahapatra, M., Mdetele, D., Keyyu, J., Gakuya, F., Eblate, E., et al. (2021) Peste Des Petits Ruminants Virus Infection at the Wildlife-Livestock Interface in the Greater Serengeti Ecosystem, 2015-2019. Viruses, 13, Article 838. https://doi.org/10.3390/v13050838
[13]
Zhao, H., Njeumi, F., Parida, S. and Benfield, C.T.O. (2021) Progress Towards Eradication of Peste des Petits Ruminants through Vaccination. Viruses, 13, Article 59. https://doi.org/10.3390/v13010059
[14]
Jones, B.A., Rich, K.M., Mariner, J.C., Anderson, J., Jeggo, M., Thevasagayam, S., et al. (2016) The Economic Impact of Eradicating Peste des Petits Ruminants: A Benefit-Cost Analysis. PLOS ONE, 11, e0149982. https://doi.org/10.1371/journal.pone.0149982
[15]
Diallo, A., Taylor, W.P., Lefèvre, P.C. and Provost, A. (1989) Atténuation d’une souche de virus de la peste des petits ruminants: candidat pour un vaccin homologue vivant [Attenuation of a Strain of Rinderpest Virus: Potential Homologous Live Vaccine]. Revue d’elevage et de medecineveterinaire des pays tropicaux, 42, 311-319.
[16]
Diallo, A., Minet, C., Le Goff, C., Berhe, G., Albina, E., Libeau, G., et al. (2007) The Threat of Peste des Petits Ruminants: Progress in Vaccine Development for Disease Control. Vaccine, 25, 5591-5597. https://doi.org/10.1016/j.vaccine.2007.02.013
[17]
Sreenivasa, B.P., Dhar, P., Singh, R.P. and Bandyopadhyay, S.K. (2000) Evaluation of an Indigenously Developed Homologous Live Attenuated Cell Culture Vaccine against Peste-des-Petits-Ruminants Infection of Small Ruminants. Proceedings of XX Annual Conference of Indian Association of Veterinary Microbiologists, Immunologists and Specialists in Infectious Diseases (IAVMI), Pantnagar, India, 2000, 84 p.
[18]
Parida, S., Muniraju, M., Mahapatra, M., Muthuchelvan, D., Buczkowski, H. and Banyard, A.C. (2015) Peste des petits ruminants. Veterinary Microbiology, 181, 90-106. https://doi.org/10.1016/j.vetmic.2015.08.009
[19]
Fadol, M.A. and El Hussein, A.M. (2004) Production of PPR Vaccine in the Sudan. Journal of Science & Technology, 5, 81-86.
[20]
Clapp, K.P., Castan, A. and Lindskog, E.K. (2018) Upstream Processing Equipment. In: Jagschies, G., et al., Eds., Biopharmaceutical Processing, Elsevier, 457-476. https://doi.org/10.1016/b978-0-08-100623-8.00024-4
[21]
Bellani, C.F., Ajeian, J., Duffy, L., Miotto, M., Groenewegen, L. and Connon, C.J. (2020) Scale-Up Technologies for the Manufacture of Adherent Cells. Frontiers in Nutrition, 7, Article 575146. https://doi.org/10.3389/fnut.2020.575146
[22]
Randers-Eichhorn, L., Bartlett, R.A., Sipior, J., Frey, D.D., Carter, G.M., Lakowicz, J.R., et al. (1996) Fluorescence-Lifetime-Based Sensors: Oxygen Sensing and Other Biomedical Applications. SPIE Proceedings, 2681, 147-158. https://doi.org/10.1117/12.239568
[23]
Whittle, W.L. and Kruse, P.F. (1973) Replicate Roller Bottles. In: Kruse Jr., P.F. and Patterson Jr., M.K., Eds., Tissue Culture, Elsevier, 327-331. https://doi.org/10.1016/b978-0-12-427150-0.50083-8
[24]
Mather, J.P. (1998) Chapter 12 Laboratory Scaleup of Cell Cultures (0.5-50 Liters). Methods in Cell Biology, 57, 219-227. https://doi.org/10.1016/s0091-679x(08)61581-2
[25]
Griffiths, B. and Wurm, F. (2003) Mammalian Cell Culture. In: Meyers, R.A., Ed., Encyclopedia of Physical Science and Technology, Elsevier, 31-47. https://doi.org/10.1016/b0-12-227410-5/00399-9
[26]
Whitford, W.G. and Fairbank, A. (2011) Considerations in Scale-Up of Viral Vaccine Production. BioProcess International, 9, 16-22.
[27]
Rafiq, Q.A., Heathman, T.R., Coopman, K., Nienow, A.W. and Hewitt, C.J. (2016) Scalable Manufacture for Cell Therapy Needs. Wiley-VCH Verlag GmbH & Co KGaA, 113-146.
[28]
Bodiou, V., Moutsatsou, P. and Post, M.J. (2020) Microcarriers for Upscaling Cultured Meat Production. Frontiers in Nutrition, 7, Article 10. https://doi.org/10.3389/fnut.2020.00010
[29]
Ammerman, N.C., Beier‐Sexton, M. and Azad, A.F. (2008) Growth and Maintenance of Vero Cell Lines. Current Protocols in Microbiology, 11, A-4E. https://doi.org/10.1002/9780471729259.mca04es11
[30]
Phelan, M.C. (2007) Techniques for Mammalian Cell Tissue Culture. Current Protocols in Neuroscience, 38, A-3B. https://doi.org/10.1002/0471142727.nsa03bs38
[31]
WOAH: World Organization of Animal Health (OIE) (2022) Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Chapter 2.7.11: Peste des Petits Ruminants.
[32]
WOAH: World Organization of Animal Health (2023) Terrestrial Manual. Chapter 1.1.9 Tests for Sterility and Freedom from Contamination of Biological Materials in-Tended for Veterinary Use.
[33]
Couacy-Hymann, E., Roger, F., Hurard, C., Guillou, J.P., Libeau, G. and Diallo, A. (2002) Rapid and Sensitive Detection of Peste des Petits Ruminants Virus by a Polymerase Chain Reaction Assay. Journal of Virological Methods, 100, 17-25. https://doi.org/10.1016/s0166-0934(01)00386-x
[34]
Kärber, G. (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihen-versuche. Naunyn-SchmiedebergsArchiv für ExperimentellePathologie und Pharmakologie, 162, 480-483. https://doi.org/10.1007/bf01863914
[35]
Gallo-Ramírez, L.E., Nikolay, A., Genzel, Y. and Reichl, U. (2015) Bioreactor Concepts for Cell Culture-Based Viral Vaccine Production. Expert Review of Vaccines, 14, 1181-1195. https://doi.org/10.1586/14760584.2015.1067144
[36]
Genari, S.C. and Wada, M.L. (1995) Behavioural Differences and Cytogenetic Analysis of a Transformed Cellular Population Derived from a Vero Cell Line. Cytobios, 81, 17-25.
[37]
Lefevre, P.C. and Diallo, A. (1990) La peste des petits ruminants. Revue Scientifique et Technique de l’OIE, 9, 935-981. https://doi.org/10.20506/rst.9.4.532
[38]
Seth, S. and Shaila, M.S. (2001) The Fusion Protein of Peste des Petits Ruminants Virus Mediates Biological Fusion in the Absence of Hemagglutinin-Neuraminidase Protein. Virology, 289, 86-94. https://doi.org/10.1006/viro.2001.1120
[39]
Mahapatra, M., Parida, S., Baron, M.D. and Barrett, T. (2006) Matrix Protein and Glycoproteins F and H of Peste-Des-Petits-Ruminants Virus Function Better as a Homologous Complex. Journal of General Virology, 87, 2021-2029. https://doi.org/10.1099/vir.0.81721-0
[40]
Osman, N.A., Portugal, R., Giesow, K. and Keil, G.M. (2019) Productive Replication of Peste des Petits Ruminants Virus Nigeria 75/1 Vaccine Strain in Vero Cells Correlates with Inefficiency of Maturation of the Viral Fusion Protein. Virus Research, 269, Article ID: 197634. https://doi.org/10.1016/j.virusres.2019.05.012
[41]
Uphoff, C.C. and Drexler, H.G. (2002) Comparative PCR Analysis for Detection of Mycoplasma Infections in Continuous Cell Lines. In Vitro Cellular & Developmental Biology—Animal, 38, 79-85. https://doi.org/10.1290/1071-2690(2002)038<0079:cpafdo>2.0.co;2
[42]
Uphoff, C.C. and Drexler, H.G. (2004) Detecting Mycoplasma Contamination in Cell Cultures by Polymerase Chain Reaction. In: Langdon, S.P., Ed., Cancer Cell Culture, Humana Press, 319-326. https://doi.org/10.1385/1-59259-406-9:319
[43]
WOAH: World Organization of Animal Health (2023) Terrestrial Manual Chapter 1.1.8 Principles of Veterinary Vaccine Production.
[44]
Hodgson, S., Moffat, K., Hill, H., Flannery, J.T., Graham, S.P., Baron, M.D., et al. (2018) Comparison of the Immunogenicities and Cross-Lineage Efficacies of Live Attenuated Peste des Petits Ruminants Virus Vaccines PPRV/Nigeria/75/1 and PPRV/Sungri/96. Journal of Virology, 92, e01471-18. https://doi.org/10.1128/jvi.01471-18
[45]
Mahapatra, M., Selvaraj, M. and Parida, S. (2020) Comparison of Immunogenicity and Protective Efficacy of PPR Live Attenuated Vaccines (Nigeria 75/1 and Sungri 96) Administered by Intranasal and Subcutaneous Routes. Vaccines, 8, Article 168. https://doi.org/10.3390/vaccines8020168
[46]
Milovanović, M., Dietze, K., Wernery, U. and Hoffmann, B. (2023) Investigation of Potency and Safety of Live-Attenuated Peste des Petits Ruminant Virus Vaccine in Goats by Detection of Cellular and Humoral Immune Response. Viruses, 15, Article 1325. https://doi.org/10.3390/v15061325
[47]
Patel, S.M., Nail, S.L., Pikal, M.J., Geidobler, R., Winter, G., Hawe, A., et al. (2017) Lyophilized Drug Product Cake Appearance: What Is Acceptable? Journal of Pharmaceutical Sciences, 106, 1706-1721. https://doi.org/10.1016/j.xphs.2017.03.014
[48]
Sarkar, J., Sreenivasa, B.P., Singh, R.P., Dhar, P. and Bandyopadhyay, S.K. (2003) Comparative Efficacy of Various Chemical Stabilizers on the Thermostability of a Live-Attenuated Peste des Petits Ruminants (PPR) Vaccine. Vaccine, 21, 4728-4735. https://doi.org/10.1016/s0264-410x(03)00512-7
[49]
Mariner, J.C., Gachanja, J., Tindih, S.H. and Toye, P. (2017) A Thermostable Presentation of the Live, Attenuated Peste des Petits Ruminants Vaccine in Use in Africa and Asia. Vaccine, 35, 3773-3779. https://doi.org/10.1016/j.vaccine.2017.05.040