全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gasification of Raw, Roasted and Carbonized Cashew Shells Using and Fixed Bed Co-Current Gasifier

DOI: 10.4236/ojap.2025.141001, PP. 1-13

Keywords: Cashew Nuts Shells, Gasification, Roasting, Carbonization, Energy Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study focuses on the improvement of gas quality by gasification of raw and cashew shells heat treatment by roasting and carbonization. The gasifier is a fixed-bed co-current batch mode, with a throat. It has a thermal power of around 30 kW. It meets the need for low electrical power of the order of 10 kWe. It has a double wall with a height of 153 cm and a diameter of 50 cm, and a double air injection. Improving the quality of the gas, consisting of reducing the balsam content contained in the raw shells, as well as the improvement of the physico-chemical characteristics of the shells. And this is done through the roasting and carbonization process. The tests carried out aim to evaluate the energy performance of the gasifier and analyze the gas composition resulting from the gasification of raw, roasted and carbonized cashew shells. The parameters studied are the energy efficiency of the gasifier and the energy capacity of the gas. The study showed that the energy yields of the gasifier by gasification of raw, roasted and carbonized hulls are respectively 47.5%; 28.32% and 31.48%. The specific production rate of the gas is 28.3; 132.76 and 155.32 kg/m2?h respectively for raw, roasted and charred hulls. The gasification times of raw, roasted and charred hulls are 224.33 respectively; 201 and 211 minutes. The composition of syngas shows that the gas produced from cashew shells is low in energy. Indeed, the PCI of gas from the raw, roasted and carbonized hulls is 3.1, respectively; 2.1 and 2.87 MJ/N?m3.

References

[1]  Diedhiou, A., Ndiaye, L., Bensakhria, A. and Sock, O. (2019) Thermochemical Conversion of Cashew Nut Shells, Palm Nut Shells and Peanut Shells Char with CO2 and/or Steam to Aliment a Clay Brick Firing Unit. Renewable Energy, 142, 581-590.
https://doi.org/10.1016/j.renene.2019.04.129
[2]  Godjo, T., Tagutchou, J., Naquin, P. and Gourdon, R. (2015) Valorisation des coques d’anacarde par pyrolyse au Bénin. Environnement, Ingénierie & Développement, 70, 11-18.
https://doi.org/10.4267/dechets-sciences-techniques.3282
[3]  Harouna, G.I., Oumar, S., Salifou, K.O., Tizane, D. and Jean, K. (2018) Impact of Pre-Treatment by Torrefaction and Carbonization on Temperature Field, Energy Efficiency and Tar Content during the Gasification of Cotton Stalks. Journal of Engineering and Technology Research, 10, 7-18.
https://doi.org/10.5897/jetr2018.0636
[4]  Barry, F., Sawadogo, M., Bologo (Traoré), M., Ouédraogo, I.W.K. and Dogot, T. (2021) Key Barriers to the Adoption of Biomass Gasification in Burkina Faso. Sustainability, 13, Article 7324.
https://doi.org/10.3390/su13137324
[5]  Bhavanam, A. and Sastry, R.C. (2011) Biomass Gasification Processes in Downd Raft Fixed Bed Reactors: A Review. International Journal of Chemical Engineering and Applications, 2, 425-433.
https://doi.org/10.7763/ijcea.2011.v2.146
[6]  Golden, T., Reed, B. and Das, A. (1988) Handbook of Biomass Downdraft Gasifier Engine Systems. Solar Energy Research Institute.
https://www.driveonwood.com/static/media/uploads/pdf/handbook_of_biomass_downdraft_gasifier_engine_systems.pdf
[7]  Cao, Y., Wang, Y., Riley, J.T. and Pan, W. (2006) A Novel Biomass Air Gasification Process for Producing Tar-Free Higher Heating Value Fuel Gas. Fuel Processing Technology, 87, 343-353.
https://doi.org/10.1016/j.fuproc.2005.10.003
[8]  Pan, Y.G., Roca, X., Velo, E. and Puigjaner, L. (1999) Removal of Tar by Secondary Air in Fluidised Bed Gasification of Residual Biomass and Coal. Fuel, 78, 1703-1709.
https://doi.org/10.1016/s0016-2361(99)00118-0
[9]  Van de steene, L., Tagutchou, J.P., Escudero Sanz, F.J. and Salvador, S. (2011) Gasification of Woodchip Particles: Experimental and Numerical Study of Char-H2O, Char-CO2, and Char-O2 Reactions. Chemical Engineering Science, 66, 4499-4509.
https://doi.org/10.1016/j.ces.2011.05.045
[10]  Singh, R.N., Jena, U., Patel, J.B. and Sharma, A.M. (2006) Feasibility Study of Cashew Nut Shells as an Open Core Gasifier Feedstock. Renewable Energy, 31, 481-487.
https://doi.org/10.1016/j.renene.2005.04.010
[11]  Brar, J.S., Singh, K., Wang, J. and Kumar, S. (2012) Cogasification of Coal and Biomass: A Review. International Journal of Forestry Research, 2012, Article 363058.
https://doi.org/10.1155/2012/363058
[12]  Uamusse, M.M., Persson, K.M. and Tsamba, A.J. (2014) Gasification of Cashew Nut Shell Using Gasifier Stovein Mozambique. Journal of Power and Energy Engineering, 2, 11-18.
https://doi.org/10.4236/jpee.2014.27002
[13]  Idrissa, D. (2019) Oumoul-kairou Karidio, and 2019, Développement d’une chaîne de fabrication de charbon de coques d’anacarde.
http://documentation.2ie-edu.org/cdi2ie/opac_css/index.php?lvl=author_see&id=19976
[14]  He, P., Luo, S., Cheng, G., Xiao, B., Cai, L. and Wang, J. (2012) Gasification of Biomass Char with Air-Steam in a Cyclone Furnace. Renewable Energy, 37, 398-402.
https://doi.org/10.1016/j.renene.2011.07.001
[15]  Pérez, J.F., Melgar, A. and Benjumea, P.N. (2012) Effect of Operating and Design Parameters on the Gasification/Combustion Process of Waste Biomass in Fixed Bed Downdraft Reactors: An Experimental Study. Fuel, 96, 487-496.
https://doi.org/10.1016/j.fuel.2012.01.064
[16]  Jain, A. (2000) Determination of Reactor Scaling Factors for Throatless Rice Husk Gasifier. Biomass and Bioenergy, 18, 249-256.
https://doi.org/10.1016/s0961-9534(99)00083-5
[17]  Groleau, V.E. (2019) Modélisation d’un procédé de gazéification pour le traitement des matières résiduelles.
https://publications.polymtl.ca/3894/
[18]  Vaz, J.M. (2017) Production of Biochar, Bio-Oil and Synthesis Gas from Cashew Nut Shell by Slow Pyrolysis.
http://repositorio.ipen.br/handle/123456789/27791
[19]  Ricoul, F. (2016) Association d’un procédé de gazéification avec une pile à combustible haute température (SOFC) pour la production d’électricité à partir de biomasse.
http://archive.bu.univ-nantes.fr/pollux/fichiers/download/af35f259-85a5-4b4c-adec-92cb404f0278
[20]  Amaliyah, N. and Putra, A.E.E. (2021) Microwave-Assisted Pyrolysis of Cashew Nut Shell. International Journal of Design & Nature and Ecodynamics, 16, 227-232.
https://doi.org/10.18280/ijdne.160213
[21]  Sanger, S.H., Mohod, A.G., Khandetode, Y.P., Shrirame, H.Y. and Deshmukh, A.S. (2011) Study of Carbonization for Cashew Nut Shell. Research Journal of Chemical Sciences, 1, 43-55.
[22]  Tagutchou, J.P. and Naquin, P. (2012) Caractérisation et traitement thermochimique des coques d’anacarde en vue de leur valorisation énergétique dans les procédés de transformation artisanale de noix de cajou. Environnement, Ingénierie & Développement, 62, 21-24.
https://doi.org/10.4267/dechets-sciences-techniques.2722
[23]  Kuo, P., Wu, W. and Chen, W. (2014) Gasification Performances of Raw and Torrefied Biomass in a Downdraft Fixed Bed Gasifier Using Thermodynamic Analysis. Fuel, 117, 1231-1241.
https://doi.org/10.1016/j.fuel.2013.07.125
[24]  Harouna, G.I., Van de Steene, L., Daho, T., Sanogo, O. and Béré, A. (2024) Caracteristiques physico-chimiques des coques d’anacarde brutes, carbonisees et torrefiees et du baume derivé de la coque d’anacarde. Journal de Physique de la SOAPHYS, 4, CJKA06-1-CJKA06-6.
https://doi.org/10.46411/jpsoaphys.2024.cjk.006
[25]  Alcocer, J.C.A., Duarte, J.B.F., Pereira, M.C., de Oliveira, M.L.M., de Lima, R.K.C., Benevides, D., et al. (2015) Mass and Energy Balance of a Cashew Nut Shell Gasification Pilot Unit Utilized in Power Generation. IEEE Latin America Transactions, 13, 3333-3337.
https://doi.org/10.1109/tla.2015.7387239
[26]  Nguyen, H.N., Khuong, D.A., Vu, T.T.H., Mai, T.N., Tsubota, T., Tran, V.B., et al. (2020) Kinetic and Structural Changes during Gasification of Cashew Nut Shell Char Particles. Environmental Progress & Sustainable Energy, 40, e13580.
https://doi.org/10.1002/ep.13580
[27]  Melzer, M., Blin, J., Bensakhria, A., Valette, J. and Broust, F. (2013) Pyrolysis of Extractive Rich Agroindustrial Residues. Journal of Analytical and Applied Pyrolysis, 104, 448-460.
https://doi.org/10.1016/j.jaap.2013.05.027
[28]  Kamruzzaman, M., Shahriyar, M., Bhuiyan, A.A., Bhattacharjya, D.K., Islam, M.K. and Alam, E. (2024) Energy Potential of Biomass from Rice Husks in Bangladesh: An Experimental Study for Thermochemical and Physical Characterization. Energy Reports, 11, 3450-3460.
https://doi.org/10.1016/j.egyr.2024.03.019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133