全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modeling the Cardiovascular System for the Simulation of Special Cases of Pulmonary Hypertension

DOI: 10.4236/ojapps.2025.151014, PP. 202-219

Keywords: Pulmonary Hypertension, Hemodynamic Modeling, Pulmonary Artery Stenosis, Left Ventricular Diastolic Dysfunction

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examines hemodynamic behavior in particular cases of pulmonary hypertension without treatment. Pulmonary hypertension represents an anomalous hemodynamic state and is characterized by an excessively high blood pressure in the pulmonary artery. To simulate the hemodynamic abnormalities in pulmonary hypertension under different causes and pathologies, we construct a localized parameter circuit model governed by nonlinear ordinary derivative equations of the human circulatory system. Thus, two special cases are considered, namely pulmonary the artery stenosis and the left ventricular diastolic dysfunction. For each case of pulmonary hypertension development, we determine the relationships between blood pressure and chamber and vessel pressure-volume. When the pulmonary hypertension is due to pulmonary artery stenosis, it appears that the right ventricular pressure increases up to 90 mm Hg, likewise the rise in pulmonary artery resistance induces direct increment in pulmonary artery pressure. However, when the pulmonary hypertension is due to left ventricular diastolic dysfunction, we note that the left atrial pressure and the pulmonary vein pressure augment, leading to the growth of the pulmonary artery blood pressure. The established results within this paper are useful for understanding the hemodynamic mechanism of particular pulmonary hypertension.

References

[1]  Colebank, M.J., Umar Qureshi, M. and Olufsen, M.S. (2021) Sensitivity Analysis and Uncertainty Quantification of 1-D Models of Pulmonary Hemodynamics in Mice Under Control and Hypertensive Conditions. International Journal for Numerical Methods in Biomedical Engineering, 37, e3242.
[2]  Prins, K.W. and Thenappan, T. (2016) World Health Organization Group I Pulmonary Hypertension. Cardiology Clinics, 34, 363-374.
https://doi.org/10.1016/j.ccl.2016.04.001
[3]  Barnett, C.F., Alvarez, P. and Park, M.H. (2016) Pulmonary Arterial Hypertension. Cardiology Clinics, 34, 375-389.
https://doi.org/10.1016/j.ccl.2016.04.006
[4]  D’Alto, M., Dimopoulos, K., Coghlan, J.G., Kovacs, G., Rosenkranz, S. and Naeije, R. (2018) Right Heart Catheterization for the Diagnosis of Pulmonary Hypertension. Heart Failure Clinics, 14, 467-477.
https://doi.org/10.1016/j.hfc.2018.03.011
[5]  Liu, L.L., Li, L. and Qian, K.X. (2012) Modeling and Simulation of a Fifth-Order Lumped Parameter Cardiovascular System. Chinese Journal of Biomedical Engineering, 31, 13-19.
[6]  Xiao, D.W. and Xu, B.L. (2016) Hemodynamic Recovery from Heart Failure with Left Ventricular Assist Device: A Lumped Parameter Simulation. Beijing Biomedical Engineering, 35, Article 367.
[7]  Korurek, M., Yildiz, M. and Yuksel, A. (2010) Simulation of Normal Cardiovascular System and Severe Aortic Valve Stenosis Using Equivalent Electronic Model. The Anatolian Journal of Cardiology, 10, 471-478.
https://doi.org/10.5152/akd.2010.164
[8]  Tsalikakis, D.G., Fotiadis, D.I. and Sideris, D. (2003) Simulation of Cardiovascular Diseases Using Electronic Circuits. 2003 Computers in Cardiology, Thessaloniki, 21-24 September 2003, 445-448.
https://doi.org/10.1109/cic.2003.1291188
[9]  Dolenšek, J., Podnar, T., Runovc, F. and Kordaš, M. (2009) Analog Simulation of Aortic and of Mitral Regurgitation. Computers in Biology and Medicine, 39, 474-481.
https://doi.org/10.1016/j.compbiomed.2009.03.009
[10]  Luo, C., Ramachandran, D., Ware, D.L., Ma, T.S. and Clark, J.W. (2011) Modeling Left Ventricular Diastolic Dysfunction: Classification and Key Indicators. Theoretical Biology and Medical Modelling, 8, Article No. 14.
https://doi.org/10.1186/1742-4682-8-14
[11]  Korurek, M., Yildiz, M., Yüksel, A. and Şahin, A. (2011) Simulation of Eisenmenger Syndrome with Ventricular Septal Defect Using Equivalent Electronic System. Cardiology in the Young, 22, 301-306.
https://doi.org/10.1017/s1047951111001478
[12]  Ratwatte, S., Playford, D., Strange, G., Celermajer, D.S. and Stewart, S. (2024) Prevalence and Prognostic Significance of Pulmonary Hypertension in Adults with Left Ventricular Diastolic Dysfunction. Open Heart, 11, e003049.
https://doi.org/10.1136/openhrt-2024-003049
[13]  Sahoo, S.K., Khatua, B., Behera, S.K., Bhol, D.R. and Satpathy, P. (2024) Pulmonary Arterial Hypertension in Children with Sickle Cell Anaemia. European Journal of Cardiovascular Medicine, 14, 440-443.
[14]  Tang, H., Gao, J. and Park, Y. (2013) Heart Valve Closure Timing Intervals in Response to Left Ventricular Blood Pressure. Journal of Biomedical Science and Engineering, 6, 65-75.
[15]  Tang, H., Dai, Z., Wang, M., Guo, B., Wang, S., Wen, J., et al. (2020) Lumped-Parameter Circuit Platform for Simulating Typical Cases of Pulmonary Hypertensions from Point of Hemodynamics. Journal of Cardiovascular Translational Research, 13, 826-852.
https://doi.org/10.1007/s12265-020-09953-y
[16]  Ursino, M. (1998) Interaction between Carotid Baroregulation and the Pulsating Heart: A Mathematical Model. American Journal of Physiology-Heart and Circulatory Physiology, 275, H1733-H1747.
https://doi.org/10.1152/ajpheart.1998.275.5.h1733
[17]  Frolov, S.V., Sindeev, S.V., Lischouk, V.A., Gazizova, D.S., Liepsch, D. and Balasso, A. (2016) A Lumped Parameter Model of Cardiovascular System with Pulsating Heart for Diagnostic Studies. Journal of Mechanics in Medicine and Biology, 17, Article 1750056.
https://doi.org/10.1142/s0219519417500567
[18]  Sutera, S.P. and Skalak, R. (1993) The History of Poiseuille’s Law. Annual Review of Fluid Mechanics, 25, 1-20.
https://doi.org/10.1146/annurev.fl.25.010193.000245
[19]  Qin, L., Zhang, H.-L., Liu, Z.-H., et al. (2009) Percutaneous Transluminal Angioplasty and Stenting for Pulmonary Stenosis Due to Takayasu’s Arteritis: Clinical Outcome and Four-Year Follow-Up. Clinical Cardiology, 32, 639-643.
https://doi.org/10.1002/clc.20665
[20]  Lankhaar, J., Westerhof, N., Faes, T.J.C., Marques, K.M.J., Marcus, J.T., Postmus, P.E., et al. (2006) Quantification of Right Ventricular Afterload in Patients with and without Pulmonary Hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 291, H1731-H1737.
https://doi.org/10.1152/ajpheart.00336.2006
[21]  Lankhaar, J.-W., Westerhof, N., Faes, T.J.C., Tji-Joong Gan, C., Marques, K.M., Boonstra, A., et al. (2008) Pulmonary Vascular Resistance and Compliance Stay Inversely Related during Treatment of Pulmonary Hypertension. European Heart Journal, 29, 1688-1695.
https://doi.org/10.1093/eurheartj/ehn103
[22]  Acosta, S., Puelz, C., Rivière, B., Penny, D.J., Brady, K.M. and Rusin, C.G. (2017) Cardiovascular Mechanics in the Early Stages of Pulmonary Hypertension: A Computational Study. Biomechanics and Modeling in Mechanobiology, 16, 2093-2112.
https://doi.org/10.1007/s10237-017-0940-4
[23]  Shang, X., Xiao, S., Dong, N., Lu, R., Wang, L., Wang, B., et al. (2017) Assessing Right Ventricular Function in Pulmonary Hypertension Patients and the Correlation with the New York Heart Association (NYHA) Classification. Oncotarget, 8, 90421-90429.
https://doi.org/10.18632/oncotarget.19026
[24]  Sagawa, K., Sunagawa, K. and Maughan, W.L. (1985) Ventricular End-Systolic Pressure Volume Relations. In: The Ventricle, Springer, 79-103.
https://doi.org/10.1007/978-1-4613-2599-4_4
[25]  Zile, M.R., Baicu, C.F. and Gaasch, W.H. (2004) Diastolic Heart Failure—Abnormalities in Active Relaxation and Passive Stiffness of the Left Ventricle. New England Journal of Medicine, 350, 1953-1959.
https://doi.org/10.1056/nejmoa032566
[26]  Vonk Noordegraaf, A., Westerhof, B.E. and Westerhof, N. (2017) The Relationship between the Right Ventricle and Its Load in Pulmonary Hypertension. Journal of the American College of Cardiology, 69, 236-243.
https://doi.org/10.1016/j.jacc.2016.10.047
[27]  Lock, J.E., Castaneda-Zuniga, W.R., Fuhrman, B.P. and Bass, J.L. (1983) Balloon Dilation Angioplasty of Hypoplastic and Stenotic Pulmonary Arteries. Circulation, 67, 962-967.
https://doi.org/10.1161/01.cir.67.5.962
[28]  Shikata, H., Sakamoto, S., Ueda, Y., Tsuchishima, S., Matsubara, T., Nishizawa, H., et al. (2004) Reconstruction of Bilateral Branch Pulmonary Artery Stenosis Caused by Takayasu’s Aortitis. Circulation Journal, 68, 791-794.
https://doi.org/10.1253/circj.68.791
[29]  Tyagi, S., Mehta, V., Kashyap, R. and Kaul, U.A. (2004) Endovascular Stent Implantation for Severe Pulmonary Artery Stenosis in Aortoarteritis (Takayasu’S Arteritis). Catheterization and Cardiovascular Interventions, 61, 281-285.
https://doi.org/10.1002/ccd.10741
[30]  Baerlocher, L., Kretschmar, O., Harpes, P., Arbenz, U., Berger, F. and Knirsch, W. (2007) Stent Implantation and Balloon Angioplasty for Treatment of Branch Pulmonary Artery Stenosis in Children. Clinical Research in Cardiology, 97, 310-317.
https://doi.org/10.1007/s00392-007-0631-8
[31]  Chatterjee, K. and Massie, B. (2007) Systolic and Diastolic Heart Failure: Differences and Similarities. Journal of Cardiac Failure, 13, 569-576.
https://doi.org/10.1016/j.cardfail.2007.04.006
[32]  Kurt, M., Wang, J., Torre-Amione, G. and Nagueh, S.F. (2009) Left Atrial Function in Diastolic Heart Failure. Circulation: Cardiovascular Imaging, 2, 10-15.
https://doi.org/10.1161/circimaging.108.813071
[33]  Melenovsky, V., Hwang, S., Redfield, M.M., Zakeri, R., Lin, G. and Borlaug, B.A. (2015) Left Atrial Remodeling and Function in Advanced Heart Failure with Preserved or Reduced Ejection Fraction. Circulation: Heart Failure, 8, 295-303.
https://doi.org/10.1161/circheartfailure.114.001667

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133