In aquaculture, feed represents the main component of production costs, and the development of this sector depends on the development of an economical feed formulation that meets the qualitative and quantitative requirements of fish. The aim of this study was to determine the nutritive and microbiological quality of fish feed formulated from local flours enriched with Hermetiaillucens larvae. The raw materials used for formulation were fishmeal, corn meal, low-grade rice, soybean meal and Hermetiaillucens larvae meal. Different iso-protein feed compositions were prepared with 0%, 10%, 25%, 35%, 50%, 65%, 75% and 100% incorporation of Hermetiaillucens larvae meal as a substitute for fish meal. Biochemical and microbiological analyses of these flours were determined using standard methods. The results showed that incorporation of larvae meal had an influence on the biochemical characteristics ash (8.15 to 20.27%), lipid (11.55 to 24.94%), fiber (13.93 to 20.41%) and dry matter (89.65 to 91.19%) of various formulated feed. Loads of fecal Streptococci, Staphylococci, Aeromonas, yeasts and molds ranged from 2.4 to 4.9 log 10 CFU/g; 3.6 to 3.9 log 10 CFU/g; 2.2 to 2.7 log 10 CFU/g; 2.1 to 2.3 log 10 CFU/g, respectively. The level of contamination of these flours was below the microbiological criteria applicable to animal feed. Feed formulated with 0% and 10% Hermetiaillucens larvae showed the best nutritive and microbiological characteristics. These results suggest that flours enriched with Hermetiaillucens larvae could be used in fish feed.
References
[1]
Haghbayan, S. and Shamsaie Mehrgan, M. (2015) The Effect of Replacing Fish Meal in the Diet with Enzyme-Treated Soybean Meal (HP310) on Growth and Body Composition of Rainbow Trout Fry. Molecules, 20, 21058-21066. https://doi.org/10.3390/molecules201219751
[2]
Abdel-Latif, H.M.R., Abdel-Tawwab, M., Khalil, R.H., Metwally, A.A., Shakweer, M.S., Ghetas, H.A., et al. (2021) Black Soldier Fly (Hermetiaillucens) Larvae Meal in Diets of European Seabass: Effects on Antioxidative Capacity, Non-Specific Immunity, Transcriptomic Responses, and Resistance to the Challenge with Vibrio alginolyticus. Fish & Shellfish Immunology, 111, 111-118. https://doi.org/10.1016/j.fsi.2021.01.013
[3]
Cui, X. (2019) Baltic Blue Mussel (Mytilus edulis L.) and Black Soldier fly (Hermetiaillucens) Combined with Pea Protein Concentrate as Protein Sources in Feed for Rain-Bow Trout (Oncorhynchus mykiss). Master’s Thesis, Swedish University of Agricultural Sciences, 33 p.
[4]
van Huis, A. (2003) Insects as Food in Sub-Saharan Africa. International Journal of Tropical Insect Science, 23, 163-185. https://doi.org/10.1017/s1742758400023572
[5]
Francis, G., Makkar, H.P.S. and Becker, K. (2001) Antinutritional Factors Present in Plant-Derived Alternate Fish Feed Ingredients and Their Effects in Fish. Aquaculture, 199, 197-227. https://doi.org/10.1016/s0044-8486(01)00526-9
[6]
Kelemu, S., Niassy, S., Torto, B., Fiaboe, K., Affognon, H., Tonnang, H., et al. (2015) African Edible Insects for Food and Feed: Inventory, Diversity, Commonalities and Contribution to Food Security. Journal of Insects as Food and Feed, 1, 103-119. https://doi.org/10.3920/jiff2014.0016
[7]
Li, Q., Zheng, L., Qiu, N., Cai, H., Tomberlin, J.K. and Yu, Z. (2011) Bioconversion of Dairy Manure by Black Soldier Fly (Diptera: Stratiomyidae) for Biodiesel and Sugar Production. Waste Management, 31, 1316-1320. https://doi.org/10.1016/j.wasman.2011.01.005
[8]
Wang, Y. and Shelomi, M. (2017) Review of Black Soldier Fly (Hermetiaillucens) as Animal Feed and Human Food. Foods, 6, Article 91. https://doi.org/10.3390/foods6100091
[9]
Barragan-Fonseca, K.B., Dicke, M. and van Loon, J.J.A. (2017) Nutritional Value of the Black Soldier Fly (Hermetiaillucens L.) and Its Suitability as Animal Feed—A Review. Journal of Insects as Food and Feed, 3, 105-120. https://doi.org/10.3920/jiff2016.0055
[10]
Koumi, R. (2010) Substitution de la farine de poisson par le tourteau de soja dans l’alimentation de Heterobranchus longifilis Valenciennes, 1840, Sarotherodon mel-anotheron Rüppell, 1852 et Oreochromis niloticus (Linné, 1758): Influence sur la qualité du milieu d’élevage, la croissance et la valeur nutritive des poissons. Master’s Thesis, Université Abobo-Adjamé.
[11]
Hem, S., Legendre, M., Trébaol, L., Cissé, A., Otémé, Z. and Moreau, Y. (1994) L’aquaculture lagunaire. In: Durand, J.R., Dufour, P., Guiral, D. and Zabi, S.D.F., Eds., Environnement et RessourcesAquatiques de Côte d’Ivoire: Les Milieux Lagunaires (Tome II), ORSTOM, 455-505.
[12]
AOAC (1990) Official Methods of Analysis. 15th Editions, AOAC, 808, 831-835, 1113.
[13]
AFNOR (1986) Recueil de Norme Française, corps gras, graines oléagineuses et produits dérivés. AFNOR, 527.
[14]
Dumont, M. (2019) Lignes directrices et normes pour l’interprétation des résultats analytiques en microbiologie alimentaire. http://www.mapaq.gouv.qc.ca/fr/Publications/recueil.pdf
[15]
FAO/OMS (2006) Programme mixte FAO/OMS sur les normes alimentaires. Rapport de la vingt-septième session du comité du codex sur la nutrition et les aliments diététiques ou de régime. ALINORM, 105.
[16]
Brou, K., N’Zue, K., Oswald, M. and Bamba, Y. (2020) Effets des régimes ex-trudés contenant du son de riz et du son de blé sur les performances de croissance du tilapia Oreochromis niloticus (Linnaeus, 1758) élevé en enclos. Afrique SCIENCE, 17, 264-281.
[17]
Lazard, J. (2007) Le tilapia. Cirad, 5. https://www.doc-developpement-durable.org/file/Elevages/aquaculture&peche&pisciculture/tilapia/AFSSA%20tilapia.pdf
[18]
Bamba, Y., Ouattara, A., Da Costa, K. and Gourene, G. (2008) Production de Oreochromis niloticus avec des aliments à base de sousproduits agricoles. Sciences & Nature, 5, 89-99. https://doi.org/10.4314/scinat.v5i1.42155
[19]
Rivière, R. (1978) Manuel d’alimentation des ruminants domestiques en milieu tropical. Institut d’Elevage et de Médecine Vétérinaire des Pays Tropicaux, 527.
[20]
Amezrar, M. (2021) Evaluation de la qualité microbiologique et physico-chimique des farines produites par les différentes minoteries du Wilaya d’Oum El Bouaghi. Mémoire de l’Université de Larbi Ben Mhidi Oum El Bouaghi. Département des Sciences de la Nature et de la Vie, 46.
[21]
Niaba, K. (2014) Potentialités alimentaires et nutritionnelles de Macrotermes subhyalinus ailé en Côte d’ivoire. Thèse Pour l’obtention du grade de Docteur en Sciences et Technologie des Aliments de l’Université Nangui Abrogoua, 149.
[22]
Sika, E., Kadji, B., Dje, K., Kone, F., Dabonne, S. and Koffi-Nevry, R. (2017) Nutritional Quality, Fermented Cassava Dough Use to Produce Cassava Stick, a Gabonese Traditional Food. International Journal of Multidisciplinary and Current Research, 85, 808-817.
[23]
Klunder, H.C., Wolkers-Rooijackers, J., Korpela, J.M. and Nout, M.J.R. (2012) Microbiological Aspects of Processing and Storage of Edible Insects. Food Control, 26, 628-631. https://doi.org/10.1016/j.foodcont.2012.02.013
[24]
Cabarkapa, I., Kokic, B., Plavsie, D., Ivanov, D. and Levic, J. (2009) Microbiological Safety of Animal Feed. Biotechnology in Animal Husbandry, 25, 1155-1162.