全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Accurate Predictions of Gravity without Mass, Null Dark Matter Results, Muon Precession and Solutions to the Hubble Tension, Final Parsec Problem, Information Paradox, Inter Alia: A 3.5-Year Status Report on the Probabilistic Spacetime Theory

DOI: 10.4236/ojpp.2025.151007, PP. 98-125

Keywords: Cosmology Theory, Hubble Constant, Gravity, Black Holes, Final Parsec Problem

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Probabilistic Spacetime Theory (PST) was first referenced in 2020 and published in complete form in 2021. The theory exists to facilitate developments in modern cosmology through specific predictive and explanatory assertions, both to drive and interpret research discoveries. This article describes an extensive appraisal of the theory’s demonstrated predictive accuracy and explanatory efficacy during its 3.5-year lifetime. The theory was found to have forecasted multiple astrophysical and cosmological findings such as black hole expansion without mass, gravity without mass, an excess degree of muon precession beyond the Standard Model prediction, and the self-interaction of so-called “dark matter”. Research outcomes concerning the Hubble tension were also predicted and explicated. Additionally, the PST was found to offer explanations concerning many baffling observations, including the existence of primordial supermassive black holes, the ubiquitous existence of magnetism, and unexpected heat in intergalactic hydrogen clouds. Enigmatic high-profile theoretical issues were also addressed by the PST, including the black hole information paradox, black holes without a singularity, and the final parsec problem. Overall, the theory seems to have demonstrated substantial predictive and explanatory utility during its short lifetime. To facilitate further testing of the PST, predictions of current studies’ outcomes are offered.

References

[1]  Abi, B., Albahri, T., Al-Kilani, S., Allspach, D., Alonzi, L. P., Anastasi, A. et al. (2021). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Physical Review Letters, 126, Article ID: 141801.
https://doi.org/10.1103/physrevlett.126.141801
[2]  Aguillard, D. P., Albahri, T., Allspach, D., Anisenkov, A., Badgley, K., Baeßler, S. et al. (2023). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm. Physical Review Letters, 131, Article ID: 161802.
https://doi.org/10.1103/physrevlett.131.161802
[3]  Aldins, J., Brodsky, S. J., Dufner, A. J., & Kinoshita, T. (1970). Photon-Photon Scattering Contribution to the Sixth-Order Magnetic Moments of the Muon and Electron. Physical Review D, 1, 2378-2395.
https://doi.org/10.1103/physrevd.1.2378
[4]  Almeida, A., Anderson, S. F., Argudo-Fernández, M., Badenes, C., Barger, K., Barrera-Ballesteros, J. K. et al. (2023). The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V. The Astrophysical Journal Supplement Series, 267, 44-82.
https://doi.org/10.3847/1538-4365/acda98
[5]  Alonso-Álvarez, G., Cline, J. M., & Dewar, C. (2024). Self-Interacting Dark Matter Solves the Final Parsec Problem of Supermassive Black Hole Mergers. Physical Review Letters, 133, Article ID: 021401.
https://doi.org/10.1103/physrevlett.133.021401
[6]  Autti, S., Casey, A., Eng, N., Darvishi, N., Franchini, P., Haley, R. P. et al. (2024). QUEST-DMC: Background Modelling and Resulting Heat Deposit for a Superfluid Helium-3 Bolometer. Journal of Low Temperature Physics, 215, 465-476.
https://doi.org/10.1007/s10909-024-03142-w
[7]  Bahcall, N. A. (2017). Vera C. Rubin: Pioneering American Astronomer (1928-2016). Proceedings of the National Academy of Sciences, 114, 2099-2100.
https://doi.org/10.1073/pnas.1701066114
[8]  Bailey, J., Bartl, W., von Bochmann, G., Brown, R. C. A., Farley, F. J. M., Giesch, M. et al. (1972). Precise Measurement of the Anomalous Magnetic Moment of the Muon. Il Nuovo Cimento A, 9, 369-432.
https://doi.org/10.1007/bf02785248
[9]  Belotsky, K. M., Dmitriev, A. E., Esipova, E. A., Gani, V. A., Grobov, A. V., Khlopov, M. Y. et al. (2014). Signatures of Primordial Black Hole Dark Matter. Modern Physics Letters A, 29, Article ID: 1440005.
https://doi.org/10.1142/s0217732314400057
[10]  Bernabei, R., Belli, P., Bussolotti, A., Caracciolo, V., Cappella, F., Cerulli, R. et al. (2021). Further Results from DA-MA/LIBRA-Phase2 and Perspectives. Nuclear Physics and Atomic Energy, 22, 329-342.
https://doi.org/10.15407/jnpae2021.04.329
[11]  Bolton, J. S., Caputo, A., Liu, H., & Viel, M. (2022). Comparison of Low-Redshift Lyman-α Forest Observations to Hydrodynamical Simulations with Dark Photon Dark Matter. Physical Review Letters, 129, Article ID: 211102.
https://doi.org/10.1103/physrevlett.129.211102
[12]  Bosman, S. E. I., Álvarez-Márquez, J., Colina, L., Walter, F., Alonso-Herrero, A., Ward, M. J. et al. (2024). A Mature Quasar at Cosmic Dawn Revealed by JWST Rest-Frame Infrared Spectroscopy. Nature Astronomy, 8, 1054-1065.
https://doi.org/10.1038/s41550-024-02273-0
[13]  Brünner, F., & Rebhan, A. (2015). Nonchiral Enhancement of Scalar Glueball Decay in the Witten-Sakai-Sugimoto Model. Physical Review Letters, 115, Article ID: 131601.
https://doi.org/10.1103/physrevlett.115.131601
[14]  Carr, B. J., Clesse, S., García-Bellido, J., Hawkins, M. R. S., & Kühnel, F. (2024). Observational Evidence for Primordial Black Holes: A Positivist Perspective. Physics Reports, 1054, 1-68.
https://doi.org/10.1016/j.physrep.2023.11.005
[15]  Carr, B., Kohri, K., Sendouda, Y., & Yokoyama, J. (2021). Constraints on Primordial Black Holes. Reports on Progress in Physics, 84, Article ID: 116902.
https://doi.org/10.1088/1361-6633/ac1e31
[16]  Castelvecchi, D. (2022). Notorious Dark-Matter Signal Could Be Due to Analysis Error. Nature.
https://doi.org/10.1038/d41586-022-02222-9
[17]  Charpak, G., Farley, F. J. M., Garwin, R. L., Muller, T., Sens, J. C., Telegdi, V. L. et al. (1962). Measurement of the Anomalous Magnetic Moment of the Muon. Physical Review Letters, 6, 128-132.
https://doi.org/10.1103/physrevlett.6.128
[18]  Chirenti, C., & Rezzolla, L. (2016). Did GW150914 Produce a Rotating Gravastar? Physical Review D, 94, Article ID: 084016.
https://doi.org/10.1103/physrevd.94.084016
[19]  Clements, K., Elder, B., Hackermueller, L., Fromhold, M., & Burrage, C. (2024). Detecting Dark Domain Walls through Their Impact on Particle Trajectories in Tailored Ultrahigh Vacuum Environments. Physical Review D, 109, Article ID: 123023.
https://doi.org/10.1103/physrevd.109.123023
[20]  Croker, K. S., & Weiner, J. L. (2019). Implications of Symmetry and Pressure in Friedmann Cosmology. I. Formalism. The Astrophysical Journal, 882, 19.
https://doi.org/10.3847/1538-4357/ab32da
[21]  Croker, K. S., Nishimura, K. A., & Farrah, D. (2020). Implications of Symmetry and Pressure in Friedmann Cosmology. II. Stellar Remnant Black Hole Mass Function. The Astrophysical Journal, 889, 115.
https://doi.org/10.3847/1538-4357/ab5aff
[22]  Croker, K. S., Runburg, J., & Farrah, D. (2020). Implications of Symmetry and Pressure in Friedmann Cosmology. III. Point Sources of Dark Energy That Tend toward Uniformity. The Astrophysical Journal, 900, 57.
https://doi.org/10.3847/1538-4357/abad2f
[23]  Croker, K. S., Zevin, M., Farrah, D., Nishimura, K. A., & Tarlé, G. (2021). Cosmologically Coupled Compact Objects: A Single-Parameter Model for LIGO-Virgo Mass and Redshift Distributions. The Astrophysical Journal Letters, 921, L22.
https://doi.org/10.3847/2041-8213/ac2fad
[24]  Czajka, P., Gao, T., Hirschberger, M., Lampen-Kelley, P., Banerjee, A., Yan, J. et al. (2021). Oscillations of the Thermal Conductivity in the Spin-Liquid State of α-RuCl3. Nature Physics, 17, 915-919.
https://doi.org/10.1038/s41567-021-01243-x
[25]  Dawson, K., & Percival, W. (2020). No Need to Mind the Gap: Astrophysicists Fill in 11 Billion Years of Our Universe’s Expansion History. Sloan Digital Sky Survey Press.
[26]  Doren, D. M., & Harasymiw, J. (2020). Resolving the Hubble Constant Discrepancy: Revisiting the Effect of Local Environments. International Journal of Cosmology, Astronomy and Astrophysics, 2, 94-96.
https://doi.org/10.18689/ijcaa-1000121
[27]  Doren, D. M., & Harasymiw, J. (2021). Everything Is Probabilistic Spacetime: An Integrative Theory. International Journal of Cosmology, Astronomy and Astrophysics, 3, 130-144.
https://doi.org/10.18689/ijcaa-1000127
[28]  Doren, D. M., & Harasymiw, J. (2023a). Resolving the Information Paradox with Probabilistic Spacetime. Journal of High Energy Physics, Gravitation and Cosmology, 9, 83-99.
https://doi.org/10.4236/jhepgc.2023.91008
[29]  Doren, D. M., & Harasymiw, J. (2023b). Part I: Explaining the “Muon g-2” Results with Probabilistic Spacetime. Journal of High Energy Physics, Gravitation and Cosmology, 9, 524-529.
https://doi.org/10.4236/jhepgc.2023.92043
[30]  Doren, D. M., & Harasymiw, J. (2023c). Part II: Explaining Black Hole Growth Due to Universal Expansion: Probabilistic Spacetime versus GEODEs. Journal of High Energy Physics, Gravitation and Cosmology, 9, 530-541.
https://doi.org/10.4236/jhepgc.2023.92044
[31]  Doren, D., & Harasymiw, J. (2023d). Part III: Explaining the “Extra” Heat of Intergalactic Hydrogen Clouds with Probabilistic Spacetime. Journal of High Energy Physics, Gravitation and Cosmology, 9, 542-551.
https://doi.org/10.4236/jhepgc.2023.92045
[32]  Escrivà, A., Kühnel, F., & Tada, Y. (2024). Primordial Black Holes. In M. A. Sedda, E. Bortolas, & M. Spera (Eds.), Black Holes in the Era of Gravitational-Wave Astronomy (pp. 261-377). Elsevier.
https://doi.org/10.1016/b978-0-32-395636-9.00012-8
[33]  Feng, W.-X., Yu, H.-B., & Zhong, Y.-M. (2021). Seeding Supermassive Black Holes with Self-Interacting Dark Matter: A Unified Scenario with Baryons. The Astrophysical Journal Letters, 914, L26.
https://doi.org/10.3847/2041-8213/ac04b0
[34]  Furlanetto, S. R., & Loeb, A. (2001). Intergalactic Magnetic Fields from Quasar Outflows. The Astrophysical Journal, 556, 619-634.
https://doi.org/10.1086/321630
[35]  Furtak, L. J., Labbé, I., Zitrin, A., Greene, J. E., Dayal, P., Chemerynska, I. et al. (2024). A High Black-Hole-to-Host Mass Ratio in a Lensed AGN in the Early Universe. Nature, 628, 57-61.
https://doi.org/10.1038/s41586-024-07184-8
[36]  Girotti, P. (2022). Status of the Fermilab Muon g-2 Experiment. EPJ Web of Conferences, 262, Article No. 01003.
https://doi.org/10.1051/epjconf/202226201003
[37]  Hanasz, M., Woltanski, D., & Kowalik, K. (2009). Global Galactic Dynamo Driven by Cosmic Rays and Exploding Magnetized Stars. The Astrophysical Journal, 706, L155-L159.
https://doi.org/10.1088/0004-637x/706/1/l155
[38]  Harvey, D., Massey, R., Kitching, T., Taylor, A., & Tittley, E. (2015). The Nongravitational Interactions of Dark Matter in Colliding Galaxy Clusters. Science, 347, 1462-1465.
https://doi.org/10.1126/science.1261381
[39]  Hupp, E., Roy, S., & Watzke, M. (2006). NASA Finds Direct Proof of Dark Matter. NASA Press.
[40]  Jenner, L., & Dunbar, B. (2012). Dark Matter Core Defies Explanation. NASA Press.
[41]  Keshavarzi, A., Khaw, K. S., & Yoshioka, T. (2022, January 26). Muon g-2: A Review.
https://doi.org/10.48550/arXiv.2106.06723
[42]  Kulsrud, R. M., Cen, R., Ostriker, J. P., & Ryu, D. (1997). The Protogalactic Origin for Cosmic Magnetic Fields. The Astrophysical Journal, 480, 481-491.
https://doi.org/10.1086/303987
[43]  Labe, K.R. et al. (Muon g-2 Collaboration) (12 May 2022). The Muon g-2 Experiment at Fermilab.
https://doi.org/10.48550/arXiv.2205.06336
[44]  Lemonick, M. D. (2024). Cosmic Nothing. Scientific American, 33, 20-27.
https://doi.org/10.1038/scientificamerican0124-20
[45]  Lemos, P., & Shah, P. (2024). The Cosmic Microwave Background and Ho. In E. Di Val-entino, & D. Brout (Eds.), Hubble Constant Tension (pp. 295-318). Springer.
https://doi.org/10.1007/978-981-99-0177-7
[46]  Lieu, R. (2024). The Binding of Cosmological Structures by Massless Topological Defects. Monthly Notices of the Royal Astronomical Society, 531, 1630-1636.
https://doi.org/10.1093/mnras/stae1258
[47]  Lindgren, J., & Liukkonen, J. (2021). Maxwell’s Equations from Spacetime Geometry and the Role of Weyl Curvature. Journal of Physics: Conference Series, 1956, Article ID: 012017.
https://doi.org/10.1088/1742-6596/1956/1/012017
[48]  Marinacci, F., & Vogelsberger, M. (2015). Effects of Simulated Cosmological Magnetic Fields on the Galaxy Population. Monthly Notices of the Royal Astronomical Society: Letters, 456, L69-L73.
https://doi.org/10.1093/mnrasl/slv176
[49]  Matsuoka, Y., Iwasawa, K., Onoue, M., Kashikawa, N., Strauss, M. A., Lee, C. et al. (2018). Subaru High-Z Exploration of Low-Luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7 ≤ Z ≤ 6.9. The Astrophysical Journal Supplement Series, 237, 5.
https://doi.org/10.3847/1538-4365/aac724
[50]  Matsuoka, Y., Strauss, M. A., Kashikawa, N., Onoue, M., Iwasawa, K., Tang, J. et al. (2018). Subaru High-Z Exploration of Low-Luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at Z = 6. The Astrophysical Journal, 869, 150.
https://doi.org/10.3847/1538-4357/aaee7a
[51]  Mazur, P. O., & Mottola, E. (2023). Gravitational Condensate Stars: An Alternative to Black Holes. Universe, 9, 88.
https://doi.org/10.3390/universe9020088
[52]  Meneghetti, M., Davoli, G., Bergamini, P., Rosati, P., Natarajan, P., Giocoli, C. et al. (2020). An Excess of Small-Scale Gravitational Lenses Observed in Galaxy Clusters. Science, 369, 1347-1351.
https://doi.org/10.1126/science.aax5164
[53]  Migdal, A. B. (1959). Superfluidity and the Moments of Inertia of Nuclei. Nuclear Physics, 13, 655-674.
https://doi.org/10.1016/0029-5582(59)90264-0
[54]  Milgrom, M. (1983a). A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis. The Astrophysical Journal, 270, 365-370.
https://doi.org/10.1086/161130
[55]  Milgrom, M. (1983b). A Modification of the Newtonian Dynamics—Implications for Galaxies. The Astrophysical Journal, 270, 371-383.
https://doi.org/10.1086/161131
[56]  Milgrom, M. (1983c). A Modification of the Newtonian Dynamics—Implications for Galaxy Systems. The Astrophysical Journal, 270, 384-389.
https://doi.org/10.1086/161132
[57]  Mistele, T., McGaugh, S., Lelli, F., Schombert, J., & Li, P. (2024). Indefinitely Flat Circular Velocities and the Baryonic Tully-Fisher Relation from Weak Lensing. The Astrophysical Journal Letters, 969, L3.
https://doi.org/10.3847/2041-8213/ad54b0
[58]  Özsoy, O., & Tasinato, G. (2023). Inflation and Primordial Black Holes. Universe, 9, 203.
https://doi.org/10.3390/universe9050203
[59]  Pascale, M., Frye, B., Pierel, J. D. R. et al. (2024, March 27). SN Hope: The First Measurement of Ho from a Multiply-Imaged Type 1a Supernova, Discovered by JWST.
[60]  Riess, A. G., Anand, G. S., Yuan, W., Casertano, S., Dolphin, A., Macri, L. M. et al. (2024). JWST Observations Reject Unrecognized Crowding of Cepheid Photometry as an Explanation for the Hubble Tension at 8σ Confidence. The Astrophysical Journal Letters, 962, L17.
https://doi.org/10.3847/2041-8213/ad1ddd
[61]  Riess, A. G., Yuan, W., Macri, L. M., Scolnic, D., Brout, D., Casertano, S. et al. (2022). A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km S−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. The Astrophysical Journal Letters, 934, L7.
https://doi.org/10.3847/2041-8213/ac5c5b
[62]  Riordan, J. R. (2022, Aug.). The Windchime Experiment Could Use Gravity to Hunt for Dark Matter Wind. Science News.
[63]  Riordan, J. R. (2023, July). Centuries on, Newton’s G Still Can’t Be Pinned down. Science News.
[64]  Ruan, W., Chen, Y., Tang, S., Hwang, J., Tsai, H., Lee, R. L. et al. (2021). Evidence for Quantum Spin Liquid Behaviour in Single-Layer 1T-TaSe2 from Scanning Tunnelling Microscopy. Nature Physics, 17, 1154-1161.
https://doi.org/10.1038/s41567-021-01321-0
[65]  Schiappucci, E., Raghunathan, C., To, F. et al. (2024). Constraining Cosmological Parameters Using the Pairwise Kinematic Sunyaev-Zel’dovich Effect with CMB-S4 and Future Galaxy Cluster Surveys.
[66]  Schleicher, D. R. G., Banerjee, R., Sur, S., Arshakian, T. G., Klessen, R. S., Beck, R. et al. (2010). Small-Scale Dynamo Action during the Formation of the First Stars and Galaxies. I. The Ideal MHD Limit. Astronomy & Astrophysics, 522, A115.
https://doi.org/10.1051/0004-6361/201015184
[67]  Schober, J., Schleicher, D. R. G., & Klessen, R. S. (2013). Magnetic Field Amplification in Young Galaxies. Astronomy & Astrophysics, 560, A87.
https://doi.org/10.1051/0004-6361/201322185
[68]  Silverberg, L. M., & Eischen, J. W. (2020). On a New Field Theory Formulation and a Space-Time Adjustment That Predict the Same Precession of Mercury and the Same Bending of Light as General Relativity. Physics Essays, 33, 489-512.
https://doi.org/10.4006/0836-1398-33.4.489
[69]  Taro Inoue, K., Minezaki, T., Matsushita, S., & Nakanishi, K. (2023). ALMA Measurement of 10 Kpc Scale Lensing-Power Spectra toward the Lensed Quasar MG J0414+0534. The Astrophysical Journal, 954, 197.
https://doi.org/10.3847/1538-4357/aceb5f
[70]  Venanzoni, G. (2023). New Results from the Muon g-2 Experiment.
[71]  Verde, L., Schöneberg, N., & Gil-Marín, H. (2024). A Tale of Many H0. Annual Review of Astronomy and Astrophysics, 62, 287-331.
https://doi.org/10.1146/annurev-astro-052622-033813
[72]  Wang, F., Yang, J., Fan, X., Hennawi, J. F., Barth, A. J., Banados, E. et al. (2021). A Luminous Quasar at Redshift 7.642. The Astrophysical Journal Letters, 907, L1.
https://doi.org/10.3847/2041-8213/abd8c6
[73]  Widrow, L. M., Ryu, D., Schleicher, D. R. G., Subramanian, K., Tsagas, C. G., & Treumann, R. A. (2012). The First Magnetic Fields. Space Science Reviews, 166, 37-70.
https://doi.org/10.1007/s11214-011-9833-5
[74]  Windchime Collaboration, Attanasio, A., Bhave, S.A., Blanco, C. et al. (2022). Snowmass 2021 White Paper: The Windchime Project.
[75]  XENON Collaboration, Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony, M. et al. (2017). Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data. Physical Review Letters, 118, Article ID: 101101.
https://doi.org/10.1103/physrevlett.118.101101
[76]  Yang, J., Wang, F., Fan, X., Hennawi, J. F., Davies, F. B., Yue, M. et al. (2020). Pōniuā’ena: A Luminous Z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole. The Astrophysical Journal Letters, 897, L14.
https://doi.org/10.3847/2041-8213/ab9c26
[77]  Yue, M., Eilers, A., Simcoe, R. A., Mackenzie, R., Matthee, J., Kashino, D. et al. (2024). EIGER. V. Characterizing the Host Galaxies of Luminous Quasars at Z ≳ 6. The Astrophysical Journal, 966, 176.
https://doi.org/10.3847/1538-4357/ad3914
[78]  Zwicky, F. (1933), Die Rotverschiebung von extragalaktischen Nebeln [The Red Shift of Extragalactic Nebulae]. Helvetica Physica Acta, 6, 110-127. (In German)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133