1989 is the beginning of intensive research into the phenomena of cold nuclear fusion, renamed “The Low Energy Nuclear Synthesis Reactions” (LENR). Based on these results and the long-term research of earthquakes and volcanic activity, the authors of this article put forward a hypothesis about the mainly chemical nature of the energy released at earthquakes and volcanic eruptions with the participation of primordial hydrogen and helium: high mobility of hydrogen and oxidizers provide focusing and accumulation of the latent chemical energy, which is realized suddenly and instantaneously as explosions and initiate the earthquake and/or eruptions. The volcanic eruption is viewed therein as a special type of earthquake whereby the hypocenter rises to the earth’s surface. The authors proposed a new hypothesis that LENRs significant energy to earthquakes and eruptions at the synthesis of elements lighter than iron, thus creating excess energy, which is partially used for the synthesis of heavier elements. The combination of the chemical and nuclear reactions transforms these centers of geophysical activity into giant reactors where the nuclear, chemical, and thermal transformation of mantle materials and the creation of primary deposits of heavy elements such as uranium, thorium, gold, etc. So, all chemical elements heavier than iron are not detected in the solar wind. These elements discovered on our planet could be (and probably were) created on planet Earth and not imported from explosive supernovae or far-off remote stars. To the best of our knowledge, this hypothesis has not been proposed until now.
References
[1]
Fleischmann, M. and Pons, S. (1989) Electrochemically Induced Nuclear Fusion of Deuterium. JournalofElectroanalyticalChemistryandInterfacialElectrochemistry, 261, 301-308. https://doi.org/10.1016/0022-0728(89)80006-3
[2]
Gilat, A. and Vol, A. (2005) Primordial Hydrogen-Helium Degassing, an Over-Looked Major Energy Source for Internal Terrestrial Processes. HAITJournalofScienceandEngineeringB, 2, 125-167.
[3]
Gilat, A.L. and Vol, A. (2012) Degassing of Primordial Hydrogen and Helium as the Major Energy Source for Internal Terrestrial Processes. GeoscienceFrontiers, 3, 911-921. https://doi.org/10.1016/j.gsf.2012.03.009
[4]
Tazieff, H. (1977) An Exceptional Eruption: Mt. Niragongo, Jan. 10th, 1977. BulletinVolcanologique, 40, 189-200. https://doi.org/10.1007/bf02596999
[5]
Tazieff, H. (1984) Mt. Niragongo: Renewed Activity of the Lava Lake. JournalofVolcanologyandGeothermalResearch, 20, 267-280. https://doi.org/10.1016/0377-0273(84)90043-x
[6]
Gutenberg, B. (1956) The Energy of Earthquakes. QuarterlyJournaloftheGeologicalSocietyofLondon, 112, 1-14. https://doi.org/10.1144/gsl.jgs.1956.112.01-04.02
[7]
Gando, A., et al. (2011) Partial Radiogenic Heat Model for Earth Revealed by Geoneutrino Measurements. NatureGeoscience, 4, 647-651. https://doi.org/10.1038/ngeo1205
[8]
Abe, S., Asami, S., Eizuka, M., Futagi, S., Gando, A., Gando, Y., et al. (2022) Abundances of Uranium and Thorium Elements in Earth Estimated by Geoneutrino Spectroscopy. GeophysicalResearchLetters, 49, e2022GL099566. https://doi.org/10.1029/2022gl099566
[9]
Poland, M.P., Sutton, A.J. and Gerlach, T.M. (2009) Magma Degassing Triggered by Static Decompression at Kīlauea Volcano, Hawai’i. GeophysicalResearchLetters, 36, L16306. https://doi.org/10.1029/2009gl039214
[10]
Thiéry, R. and Mercury, L. (2009) Explosive Properties of Water in Volcanic and Hydrothermal Systems. JournalofGeophysicalResearch: SolidEarth, 114, B05205. https://doi.org/10.1029/2008jb005742
[11]
Peacock, J.R., Mangan, M.T., Walters, M., Hartline, C., Glen, J., Earney, T. and Schermerhorn, W. (2019) Geophysical Characterization of the Heat Source in the Northwest Geysers, California. Proceedings of the 44thWorkshoponGeothermalReservoirEngineering, Stanford, 11-13 February 2019, SGP-TR-214.
[12]
Pappaterra, S., Inguaggiato, C., Rouwet, D., Mora-Amador, R., Ramírez-Umaña, C., González, G., et al. (2022) Rare Earth Elements Variations in a Hyperacid Crater Lake and Their Relations with Changes in Phreatic Activity, Physico-Chemical Parameters, and Chemical Composition: The Case of Poás Volcano (Costa Rica). FrontiersinEarthScience, 9, Article ID: 716970. https://doi.org/10.3389/feart.2021.716970
[13]
Busetti, M., Geletti, R., Civile, D., Sauli, C., Brancatelli, G., Forlin, E., et al. (2024) Geophysical Evidence of a Large Occurrence of Mud Volcanoes Associated with Gas Plumbing System in the Ross Sea (Antarctica). GeoscienceFrontiers, 15, Article ID: 101727. https://doi.org/10.1016/j.gsf.2023.101727
[14]
Theofanous, T.G., Yuen, W.W., Freeman, K. and Chen, X. (1996) Propagation of Steam Explosions: ESPROSE.m Verification Studies, DOE/lD-10503. University of California.
[15]
Gilat, A.L., Mavrodiev, S.C. and Vol, A. (2019) Hypothetical Physics and Chemistry of Volcanic Eruptions: The Doorway to Their Prediction. InternationalJournalofGeosciences, 10, 377-404. https://doi.org/10.4236/ijg.2019.104022
[16]
Ramírez, C.V., Romero, Y.V. and Romero, M.V. (2023) Theory of Volcanic Energy (Expanded English Edition). ModernSciencesJournal, 12, 76-86.
[17]
Vol, A. (2014) Thermo-Electrochemical Processes of the Earth’s Degassing Creating Geomagnetic Field and Changing Its Value and Direction (Thermodynamic Approach). InternationalJournalofGeosciences, 5, 1219-1230. https://doi.org/10.4236/ijg.2014.510101
[18]
Hassan, J., Khan, F., Amyotte, P. and Ferdous, R. (2014) A Model to Assess Dust Explosion Occurrence Probability. JournalofHazardousMaterials, 268, 140-149. https://doi.org/10.1016/j.jhazmat.2014.01.017
[19]
Klebanoff, L.E., Pratt, J.W. and LaFleur, C.B. (2016) Comparison of the Safety-Related Physical and Combustion Properties of Liquid Hydrogen and Liquid Natural Gas in the Context of the SF-Breeze High-Speed Fuel-Cell Ferry. Sandia National Laboratories.
[20]
Schmelz, J.T., Reames, D.V., von Steiger, R. and Basu, S. (2012) Composition of the Solar Corona, Solar Wind, and Solar Energetic Particles. TheAstrophysicalJournal, 755, Article No. 33. https://doi.org/10.1088/0004-637x/755/1/33
[21]
Olson, P. and Sharp, Z.D. (2018) Hydrogen and Helium Ingassing during Terrestrial Planet Accretion. EarthandPlanetaryScienceLetters, 498, 418-426. https://doi.org/10.1016/j.epsl.2018.07.006
[22]
Olson, P.L. and Sharp, Z.D. (2022) Primordial Helium‐3 Exchange between Earth’s Core and Mantle. Geochemistry, Geophysics, Geosystems, 23, e2021GC009985. https://doi.org/10.1029/2021gc009985
[23]
Güsten, R., Wiesemeyer, H., Neufeld, D., Menten, K.M., Graf, U.U., Jacobs, K., et al. (2019) Astrophysical Detection of the Helium Hydride Ion HeH+. Nature, 568, 357-359. https://doi.org/10.1038/s41586-019-1090-x
[24]
Fortenberry, R.C. and Wiesenfeld, L. (2020) A Molecular Candle Where Few Molecules Shine: HeHHe+. Molecules, 25, Article No. 2183. https://doi.org/10.3390/molecules25092183
[25]
Kędziera, D., Rauhut, G. and Császár, A.G. (2022) Structure, Energetics, and Spectroscopy of the Chromophores of HHe+ n, H2He+ n, and He+ n Clusters and Their Deuterated Isotopologues. PhysicalChemistryChemicalPhysics, 24, 12176-12195. https://doi.org/10.1039/d1cp05535f
[26]
Tagawa, S., Sakamoto, N., Hirose, K., Yokoo, S., Hernlund, J., Ohishi, Y., et al. (2021) Experimental Evidence for Hydrogen Incorporation into Earth’s Core. NatureCommunications, 12, Article No. 2588. https://doi.org/10.1038/s41467-021-22035-0
[27]
Rumyantsev, V.N. (2016) Hydrogen in the Earth’s Outer Core, and Its Role in the Deep Earth Geodynamics. Geodynamics&Tectonophysics, 7, 119-135. https://doi.org/10.5800/gt-2016-7-1-0200
[28]
Serovaiskii, A. and Kutcherov, V. (2020) Formation of Complex Hydrocarbon Systems from Methane at the Upper Mantle Thermobaric Conditions. ScientificReports, 10, Article No. 4559. https://doi.org/10.1038/s41598-020-61644-5
[29]
Hirschmann, M.M. (2023) The Deep Earth Oxygen Cycle: Mass Balance Considerations on the Origin and Evolution of Mantle and Surface Oxidative Reservoirs. EarthandPlanetaryScienceLetters, 619, Article ID: 118311. https://doi.org/10.1016/j.epsl.2023.118311
[30]
Lin, Y. and van Westrenen, W. (2021) Oxygen as a Catalyst in the Earth’s Interior? NationalScienceReview, 8, nwab009. https://doi.org/10.1093/nsr/nwab009
[31]
Shinohara, H., Yokoo, A. and Kazahaya, R. (2018) Variation of Volcanic Gas Composition during the Eruptive Period in 2014-2015 at Nakadake Crater, Aso Volcano, Japan. Earth, PlanetsandSpace, 70, Article No. 151. https://doi.org/10.1186/s40623-018-0919-0
[32]
Subramanian, R. (2020) DGMS Technical Circular No. 04 of 2020, Dhanbad 24 February, Government of India, Ministry of Labor and Employment, Directorate General JF Mines Safety.
[33]
Thomas, G. (2012) Some Observations on the Initiation and Onset of Detonation. PhilosophicalTransactionsoftheRoyalSocietyA: Mathematical, PhysicalandEngineeringSciences, 370, 715-739. https://doi.org/10.1098/rsta.2011.0368
[34]
Sun, X., Yan, C., Yan, Y., Mi, X., Lee, J.H.S. and Dick Ng, H. (2022) Critical Tube Diameter for Quasi-Detonations. CombustionandFlame, 244, Article ID: 112280. https://doi.org/10.1016/j.combustflame.2022.112280
[35]
Zhang, B., Ng, H.D. and Lee, J.H.S. (2012) The Critical Tube Diameter and Critical Energy for Direct Initiation of Detonation in C2H2/N2O/Ar Mixtures. CombustionandFlame, 159, 2944-2953. https://doi.org/10.1016/j.combustflame.2012.06.010
[36]
Schroeder, V. and Holtappels, K. (2005) Explosion Characteristics Hydrogen-Air and Hydrogen-Oxygen Mixtures at Elevated Pressures, (Conference Article). https://conference.ing.unipi.it/ichs2005/Papers/120001.pdf
[37]
Peng, Y. and Deng, J. (2024) Hydrogen Diffusion in the Lower Mantle Revealed by Machine Learning Potentials. JournalofGeophysicalResearch: SolidEarth, 129, e2023JB028333. https://doi.org/10.1029/2023jb028333
[38]
Mazzola, G., Helled, R. and Sorella, S. (2018) Phase Diagram of Hydrogen and a Hydrogen-Helium Mixture at Planetary Conditions by Quantum Monte Carlo Simulations. PhysicalReviewLetters, 120, Article ID: 025701. https://doi.org/10.1103/physrevlett.120.025701
[39]
Péron, S., Moreira, M. and Agranier, A. (2018) Origin of Light Noble Gases (He, Ne, and Ar) on Earth: A Review. Geochemistry, Geophysics, Geosystems, 19, 979-996. https://doi.org/10.1002/2017gc007388
[40]
Mukhopadhyay, S. and Parai, R. (2019) Noble Gases: A Record of Earth’s Evolution and Mantle Dynamics. AnnualReviewofEarthandPlanetarySciences, 47, 389-419. https://doi.org/10.1146/annurev-earth-053018-060238
[41]
Sanloup, C. (2020) Noble Gas Reactivity in Planetary Interiors. FrontiersinPhysics, 8, Article No. 157. https://doi.org/10.3389/fphy.2020.00157
[42]
Spandler, C., Slezak, P. and Nazari-Dehkordi, T. (2020) Tectonic Significance of Australian Rare Earth Element Deposits. Earth-ScienceReviews, 207, Article ID: 103219. https://doi.org/10.1016/j.earscirev.2020.103219
[43]
Stevenson, D.J. and Salpeter, E.E. (1977) The Phase Diagram and Transport Properties for Hydrogen-Helium Fluid Planets. TheAstrophysicalJournalSupplementSeries, 35, 221-237. https://doi.org/10.1086/190478
[44]
Karato, S. (1990) The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle. Nature, 347, 272-273. https://doi.org/10.1038/347272a0
[45]
Karato, S. (2006) Remote Sensing of Hydrogen in Earth’s Mantle. ReviewsinMineralogyandGeochemistry, 62, 343-375. https://doi.org/10.2138/rmg.2006.62.15
[46]
Karato, S. and Wang, D. (2013) Chapter 5. Electrical Conductivity of Minerals and Rocks. In: Karato, S., Ed., PhysicsandChemistryoftheDeepEarth, John Wiley & Sons.
[47]
Gufeld, I.L. and Matveeva, M.I. (2011) Barrier Effect of Degassing and Destruction of the Earth’s Crust. DokladyEarthSciences, 438, 677-680. https://doi.org/10.1134/s1028334x11050199
[48]
Gufeld, I.L. (2012) Geological Consequences of Amorphization of the Lithosphere and Upper Mantle Structures Caused by Hydrogen Degassing. Geodynamics&Tectonophysics, 3, 417-435. https://doi.org/10.5800/gt-2012-3-4-0083
[49]
Fomin, I. and Schiffer, C. (2019) Water, Hydrous Melting, and Teleseismic Signature of the Mantle Transition Zone. Geosciences, 9, Article No. 505. https://doi.org/10.3390/geosciences9120505
[50]
Mishin, Y., Sofronis, P. and Bassani, J.L. (2002) Thermodynamic and Kinetic Aspects of Interfacial Decohesion. ActaMaterialia, 50, 3609-3622. https://doi.org/10.1016/s1359-6454(02)00165-9
[51]
Song, J. and Curtin, W.A. (2012) Atomic Mechanism and Prediction of Hydrogen Embrittlement in Iron. NatureMaterials, 12, 145-151. https://doi.org/10.1038/nmat3479
[52]
Lan, H., Martin, C.D. and Hu, B. (2010) Effect of Heterogeneity of Brittle Rock on Micromechanical Extensile Behavior during Compression Loading. JournalofGeophysicalResearch: SolidEarth, 115, B01202. https://doi.org/10.1029/2009jb006496
[53]
Li, C., Pan, L., Zhang, L., Chris A., M. and Galang, A.G. (2023) Deformation Localization and Crack Propagation of Sandstone Containing Different Flaw Inclination Angles under Different Loading Rates. FrontiersinEarthScience, 11, Article ID: 1322992. https://doi.org/10.3389/feart.2023.1322992
[54]
Salas-Reyes, A.E., Qaban, A. and Mintz, B. (2024) Comments on the Intermediate-Temperature Embrittlement of Metals and Alloys: The Conditions for Transgranular and Intergranular Failure. Metals, 14, Article No. 270. https://doi.org/10.3390/met14030270
[55]
Güldemeister, N., Wünnemann, K., Durr, N. and Hiermaier, S. (2012) Propagation of Impact‐Induced Shock Waves in Porous Sandstone Using Mesoscale Modeling. Meteoritics&PlanetaryScience, 48, 115-133. https://doi.org/10.1111/j.1945-5100.2012.01430.x
[56]
Scholz, C.H., Tan, Y.J. and Albino, F. (2019) The Mechanism of Tidal Triggering of Earthquakes at Mid-Ocean Ridges. NatureCommunications, 10, Article No. 2526. https://doi.org/10.1038/s41467-019-10605-2
[57]
Zaccagnino, D. and Doglioni, C. (2022) Earth’s Gradients as the Engine of Plate Tectonics and Earthquakes. LaRivistadelNuovoCimento, 45, 801-881. https://doi.org/10.1007/s40766-022-00038-x
[58]
Liu, L. and Zhang, J.S. (2015) Differential Contraction of Subducted Lithosphere Layers Generates Deep Earthquakes. EarthandPlanetaryScienceLetters, 421, 98-106. https://doi.org/10.1016/j.epsl.2015.03.053
[59]
Kulinich, Y., Novosyadlyj, B., Shulga, V. and Han, W. (2020) Thermal and Resonant Emission of Dark Age Halos in the Rotational Lines of HeH+. PhysicalReviewD, 101, Article ID: 083519. https://doi.org/10.1103/physrevd.101.083519
[60]
Novosyadlyj, B., Kulinich, Y., Melekh, B. and Shulga, V. (2022) The First Molecules in the Intergalactic Medium and Halos of the Dark Ages and Cosmic Dawn. Astronomy&Astrophysics, 663, A120. https://doi.org/10.1051/0004-6361/202243238
[61]
Zhou, W., Hao, M., Zhang, J.S., Chen, B., Wang, R. and Schmandt, B. (2022) Constraining Composition and Temperature Variations in the Mantle Transition Zone. NatureCommunications, 13, Article No. 1094. https://doi.org/10.1038/s41467-022-28709-7
[62]
Shackelford, J.F. (2014) Gas Solubility and Diffusion in Oxide Glasses—Implications for Nuclear Wasteforms. ProcediaMaterialsScience, 7, 278-285. https://doi.org/10.1016/j.mspro.2014.10.036
[63]
Amalberti, J., Burnard, P., Laporte, D., Tissandier, L. and Neuville, D.R. (2016) Multidiffusion Mechanisms for Noble Gases (He, Ne, Ar) in Silicate Glasses and Melts in the Transition Temperature Domain: Implications for Glass Polymerization. GeochimicaetCosmochimicaActa, 172, 107-126. https://doi.org/10.1016/j.gca.2015.09.027
[64]
Vlasov, K., Audétat, A. and Keppler, H. (2023) H2-H2O Immiscibility in Earth’s Upper Mantle. ContributionstoMineralogyandPetrology, 178, Article No. 36. https://doi.org/10.1007/s00410-023-02019-7
[65]
Hudák, I., Skryja, P., Bojanovský, J., Jegla, Z. and Krňávek, M. (2021) The Effect of Inert Fuel Compounds on Flame Characteristics. Energies, 15, Article No. 262. https://doi.org/10.3390/en15010262
[66]
Chen, J. (2024) Effect of Noble Gases on the Transport and Thermodynamic Characteristics of Microchannel Reforming Reactors for Hydrogen Production. InternationalJournalofHydrogenEnergy, 50, 654-671. https://doi.org/10.1016/j.ijhydene.2023.08.365
[67]
Druzhbin, D., Fei, H. and Katsura, T. (2021) Independent Hydrogen Incorporation in Wadsleyite from Oxygen Fugacity and Non-Dissociation of H2O in the Reducing Mantle Transition Zone. EarthandPlanetaryScienceLetters, 557, Article ID: 116755. https://doi.org/10.1016/j.epsl.2021.116755
[68]
Ohtani, E. (2019) The Role of Water in Earth’s Mantle. NationalScienceReview, 7, 224-232. https://doi.org/10.1093/nsr/nwz071
[69]
Williams, Q. and Hemley, R.J. (2001) Hydrogen in the Deep Earth. AnnualReviewofEarthandPlanetarySciences, 29, 365-418. https://doi.org/10.1146/annurev.earth.29.1.365
[70]
Hu, Q., Kim, D.Y., Yang, W., Yang, L., Meng, Y., Zhang, L., et al. (2016) FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth’s Oxygen-Hydrogen Cycles. Nature, 534, 241-244. https://doi.org/10.1038/nature18018
[71]
Postnikov, A.V., Uvarov, I.V., Prokaznikov, A.V. and Svetovoy, V.B. (2016) Observation of Spontaneous Combustion of Hydrogen and Oxygen in Microbubbles. AppliedPhysicsLetters, 108, Article ID: 121604. https://doi.org/10.1063/1.4944780
[72]
Svetovoy, V.B., Prokaznikov, A.V., Postnikov, A.V., Uvarov, I.V. and Palasantzas, G. (2019) Explosion of Microbubbles Generated by the Alternating Polarity Water Electrolysis. Energies, 13, Article No. 20. https://doi.org/10.3390/en13010020
[73]
Wada, I., Behn, M.D. and He, J. (2011) Grain-Size Distribution in the Mantle Wedge of Subduction Zones. JournalofGeophysicalResearch, 116, B10203. https://doi.org/10.1029/2011jb008294
[74]
Cerpa, N.G., Wada, I. and Wilson, C.R. (2017) Fluid Migration in the Mantle Wedge: Influence of Mineral Grain Size and Mantle Compaction. JournalofGeophysicalResearch: SolidEarth, 122, 6247-6268. https://doi.org/10.1002/2017jb014046
[75]
He, Y., Kim, D.Y., Struzhkin, V.V., Geballe, Z.M., Prakapenka, V. and Mao, H. (2023) The Stability of Feh and Hydrogen Transport at Earth’s Core Mantle Boundary. ScienceBulletin, 68, 1567-1573. https://doi.org/10.1016/j.scib.2023.06.012
[76]
Zhang, L., Zhang, L., Tang, M., Wang, X., Tao, R., Xu, C., et al. (2022) Massive Abiotic Methane Production in Eclogite during Cold Subduction. NationalScienceReview, 10, nwac207. https://doi.org/10.1093/nsr/nwac207
[77]
Anderson, D.L. (2009) Energetics of the Earth and the Missing Heat Source Mystery. Tech. Report, Seismological Laboratory, California Institute of Technology.
[78]
Terez, E.I. and Terez, I.E. (2013) Thermonuclear Reaction as the Main Source of the Earth’s Energy. InternationalJournalofAstronomyandAstrophysics, 3, 362-365. https://doi.org/10.4236/ijaa.2013.33040
[79]
Terez, E.I. and Terez, I.E. (2015) Fusion Reactions as the Main Source of the Earth’s Internal Energy. HeraldoftheRussianAcademyofSciences, 85, 163-169. https://doi.org/10.1134/s1019331615020070
[80]
Dye, S.T. (2012) Geoneutrinos and the Radioactive Power of the Earth. ReviewsofGeophysics, 50, RG3007. https://doi.org/10.1029/2012rg000400
[81]
Fukuhara, M. (2016) Possible Generation of Heat from Nuclear Fusion in Earth’s Inner Core. ScientificReports, 6, Article No. 37740. https://doi.org/10.1038/srep37740
[82]
Fukuhara, M. (2020) Possible Nuclear Fusion of Deuteron in the Cores of Earth, Jupiter, Saturn, and Brown Dwarfs. AIPAdvances, 10, Article ID: 035126. https://doi.org/10.1063/1.5108922
[83]
Bychkov, S. (2020) Magma as a Generator of Plasma and Thermonuclear Fusion in the Bowels of the Earth. SSRNElectronicJournal. https://doi.org/10.2139/ssrn.3738328
[84]
Zelensky, V.F., Rybalko, V.F., Tolstolutskaya, G.D., Pistryak, S.V., Kopanets, I.E. and Morozov, A.N. (1994) Initiation of Nuclear Fusion Reactions in Metal-Deuterium and Metal-Deuterium + Tritium Systems by Bombardment with Noble Gas Ions. FusionTechnology, 25, 95-102. https://doi.org/10.13182/fst94-a30238
[85]
Sada, H. (1997) Theory of Nuclear Reactions in Solids. FusionTechnology, 32, 107-125. https://doi.org/10.13182/fst97-a19883
[86]
Pines, V., Pines, M., Chait, A., Steinetz, B.M., Forsley, L.P., Hendricks, R.C., et al. (2020) Nuclear Fusion Reactions in Deuterated Metals. PhysicalReviewC, 101, Article ID: 044609. https://doi.org/10.1103/physrevc.101.044609
[87]
Steinetz, B.M., Benyo, T.L., Chait, A., Hendricks, R.C., Forsley, L.P., Baramsai, B., et al. (2020) Novel Nuclear Reactions Observed in Bremsstrahlung-Irradiated Deuterated Metals. PhysicalReviewC, 101, Article ID: 044619. https://doi.org/10.1103/physrevc.101.044610
[88]
Dornheim, T., Groth, S. and Bonitz, M. (2018) The Uniform Electron Gas at Warm Dense Matter Conditions. PhysicsReports, 744, 1-86. https://doi.org/10.1016/j.physrep.2018.04.001
[89]
Gardner, J.E., Wadsworth, F.B., Carley, T.L., Llewellin, E.W., Kusumaatmaja, H. and Sahagian, D. (2023) Bubble Formation in Magma. AnnualReviewofEarthandPlanetarySciences, 51, 131-154. https://doi.org/10.1146/annurev-earth-031621-080308
[90]
Davydov, M.N., Kedrinskii, V.K., Chernov, A.A. and Takayama, K. (2005) Generation and Evolution of Cavitation in Magma under Dynamic Unloading. JournalofAppliedMechanicsandTechnicalPhysics, 46, 208-215. https://doi.org/10.1007/s10808-005-0036-2
[91]
Graziani, F., Moldabekov, Z., Olson, B. and Bonitz, M. (2022) Shock Physics in Warm Dense Matter: A Quantum Hydrodynamics Perspective. ContributionstoPlasmaPhysics, 62, e202100170. https://doi.org/10.1002/ctpp.202100170
[92]
White, T.G., Dai, J. and Riley, D. (2023) Dynamic and Transient Processes in Warm Dense Matter. PhilosophicalTransactionsoftheRoyalSocietyA: Mathematical, PhysicalandEngineeringSciences, 381, Article ID: 20220223. https://doi.org/10.1098/rsta.2022.0223
[93]
Armour, E.A.G. (2007) Muon Catalyzed Fusion, NASA GSFC Science Symposium on Atomic and Molecular Physics.
[94]
Kozima, H. and Kaki, K. (2000) Anomalous Nuclear Reactions in Solids Revealed by CF Experiments. Report of the Faculty of Science Shizuoka University, Vol. 34, 1-35.
[95]
Kozima, H. (2003) CF-Matter and the Cold Fusion Phenomenon. 10thInternationalConferenceonColdFusion.
[96]
Kasagi, J. (2004) Low-Energy Nuclear Reactions in Metals. ProgressofTheoreticalPhysicsSupplement, 154, 365-372. https://doi.org/10.1143/ptps.154.365
[97]
Kasagi, J. and Honda, Y. (2016) Screening Energy of the D + D Reaction in an Electron Plasma Deduced from Cooperative Colliding Reaction. JournalofCondensedMatterNuclearScience, 19, 127-134. https://doi.org/10.70923/001c.72381
[98]
Kasagi, J., Honda, Y. and Fang, K. (2020) Screening Energy for Low Energy Nuclear Reactions in Condensed Matter. In: Biberian, J.-P., Ed., ColdFusion, Elsevier, 167-187. https://doi.org/10.1016/b978-0-12-815944-6.00010-5
[99]
Jaitner, L. (2015-2019 )The Physics of Condensed Plasmoids and Low-Energy Nuclear Reactions (LENR). https://condensed-plasmoids.com/condensed_plasmoids_lenr.pdf
[100]
Metzler, F., Hunt, C. and Galvanetto, N. (2022) Known Mechanisms That Increase Nuclear Fusion Rates in the Solid State.
[101]
Parkhomov, A.G. and Belousova, E.O. (2022) Huge Variety of Nuclides That Arise in the LENR Processes: Attempt at Explanation. JournalofModernPhysics, 13, 274-284. https://doi.org/10.4236/jmp.2022.133019
[102]
Bartalucci, S., Vysotskii, V.I. and Vysotskyy, M.V. (2019) Correlated States and Nuclear Reactions: An Experimental Test with Low Energy Beams. Physical Review Accelerators and Beams, 22, Article ID: 054503. https://doi.org/10.1103/physrevaccelbeams.22.054503
[103]
Wei, Y. (2017) Collective Low Energy Nuclear Reaction May Cause Overunity in Graneau’s Water Explosion.
[104]
Lee, I. and Diaz-Torres, A. (2022) Coherence Dynamics in Low-Energy Nuclear Fusion. Physics Letters B, 827, Article ID: 136970. https://doi.org/10.1016/j.physletb.2022.136970
[105]
Oganessian, Y. (2006) Synthesis and Decay Properties of Superheavy Elements. PureandAppliedChemistry, 78, 889-904. https://doi.org/10.1351/pac200678050889
[106]
Reed, G.W., Kigoshi, K. and Turkevich, A. (1960) Determinations of Concentrations of Heavy Elements in Meteorites by Activation Analysis. GeochimicaetCosmochimicaActa, 20, 122-140. https://doi.org/10.1016/0016-7037(60)90055-7
[107]
Suttle, M.D., Folco, L., Dionnet, Z., Van Ginneken, M., Di Rocco, T., Pack, A., et al. (2022) Isotopically Heavy Micrometeorites—Fragments of CY Chondrite or a New Hydrous Parent Body? Journal of Geophysical Research: Planets, 127, e2021JE007154. https://doi.org/10.1029/2021je007154
[108]
van Ginneken, M., Wozniakiewicz, P.J., Brownlee, D.E., Debaille, V., Della Corte, V., Delauche, L., et al. (2024) Micrometeorite Collections: A Review and Their Current Status. PhilosophicalTransactionsoftheRoyalSocietyA: Mathematical, PhysicalandEngineeringSciences, 382, Article ID: 20230195. https://doi.org/10.1098/rsta.2023.0195
[109]
Arculus, R. (2016) The Cosmic Origins of Uranium. World Nuclear Association. http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/uranium-resources/the-cosmic-origins-of-uranium.aspx
[110]
Parrish, R. (2014) Uranium-lead Dating. In: Rink, W. and Thompson, J., Eds., EncyclopediaofScientificDatingMethods, Springer, 1-16. https://doi.org/10.1007/978-94-007-6326-5_193-1
[111]
USGS Publications Warehouse (2001, June 13) Radiometric Time Scale. https://pubs.usgs.gov/gip/geotime/radiometric.html
[112]
Clark, R.S., Rowe, M.W., Ganapathy, R. and Kuroda, P.K. (1967) Iodine, Uranium and Tellurium Contents in Meteorites. GeochimicaetCosmochimicaActa, 31, 1605-1613. https://doi.org/10.1016/0016-7037(67)90109-3
[113]
Morgan, J.W. and Lovering, J.F. (1968) Uranium and Thorium Abundances in Chondritic Meteorites. Talanta, 15, 1079-1095. https://doi.org/10.1016/0039-9140(68)80031-1
[114]
Tatsumoto, M., Knight, R.J. and Allegre, C.J. (1973) Time Differences in the Formation of Meteorites as Determined from the Ratio of Lead-207 to Lead-206. Science, 180, 1279-1283. https://doi.org/10.1126/science.180.4092.1279
[115]
Brennecka, G.A. and Wadhwa, M. (2012) Uranium Isotope Compositions of the Basaltic Angrite Meteorites and the Chronological Implications for the Early Solar System. ProceedingsoftheNationalAcademyofSciences, 109, 9299-9303. https://doi.org/10.1073/pnas.1114043109
[116]
Moromoto, N., Kawai, Y., Terada, K., Miyahara, M., Takahata, N., Sano, Y., et al. (2023) Uranium-Lead Systematics of Lunar Basaltic Meteorite Northwest Africa 2977. MassSpectrometry, 12, A0115. https://doi.org/10.5702/massspectrometry.a0115
[117]
Murthy, V.R. and Patterson, C.C. (1962) Primary Isochron of Zero Age for Meteorites and the Earth. JournalofGeophysicalResearch, 67, 1161-1167. https://doi.org/10.1029/jz067i003p01161
[118]
Lyons, J.B., Aleinikoff, J.N. and Zartman, R.E. (1986) Uranium-Thorium-Lead Ages of the Highlandcroft Plutonic Suite, Northern New England. AmericanJournalofScience, 286, 489-509. https://doi.org/10.2475/ajs.286.6.489
[119]
Scott, E. (2020) Iron Meteorites: Composition, Age, and Origin. In: Read, P., et al., Eds., OxfordResearchEncyclopediaofPlanetaryScience, Oxford University Press, Article No. 206.
[120]
Schiller, M., Paton, C. and Bizzarro, M. (2015) Evidence for Nucleosynthetic Enrichment of the Protosolar Molecular Cloud Core by Multiple Supernova Events. GeochimicaetCosmochimicaActa, 149, 88-102. https://doi.org/10.1016/j.gca.2014.11.005
[121]
Hilton, C.D., Bermingham, K.R., Walker, R.J. and McCoy, T.J. (2019) Genetics, Crystallization Sequence, and Age of the South Byron Trio Iron Meteorites: New Insights to Carbonaceous Chondrite (CC) Type Parent Bodies. GeochimicaetCosmochimicaActa, 251, 217-228. https://doi.org/10.1016/j.gca.2019.02.035
[122]
Nie, N.X., Wang, D., Torrano, Z.A., Carlson, R.W., O’D. Alexander, C.M. and Shahar, A. (2023) Meteorites Have Inherited Nucleosynthetic Anomalies of Potassium-40 Produced in Supernovae. Science, 379, 372-376. https://doi.org/10.1126/science.abn1783
[123]
Martins, R., Kuthning, S., Coles, B.J., Kreissig, K. and Rehkämper, M. (2023) Nucleosynthetic Isotope Anomalies of Zinc in Meteorites Constrain the Origin of Earth’s Volatiles. Science, 379, 369-372. https://doi.org/10.1126/science.abn1021
[124]
Lugaro, M., Ott, U. and Kereszturi, Á. (2018) Radioactive Nuclei from Cosmochronology to Habitability. ProgressinParticleandNuclearPhysics, 102, 1-47. https://doi.org/10.1016/j.ppnp.2018.05.002
[125]
Skyttä, P., Määttä, M., Piippo, S., Kara, J., Käpyaho, A., Heilimo, E., et al. (2020) Constraints over the Age of Magmatism and Subsequent Deformation for the Neoarchean Kukkola Gneiss Complex, Northern Fennoscandia. BulletinoftheGeologicalSocietyofFinland, 92, 19-38. https://doi.org/10.17741/bgsf/92.1.002
[126]
Goldich, S.S., Hedge, C.E. and Stern, T.W. (1970) Age of the Morton and Montevideo Gneisses and Related Rocks, Southwestern Minnesota. GeologicalSocietyofAmericaBulletin, 81, 3671-3696. https://doi.org/10.1130/0016-7606(1970)81[3671:aotmam]2.0.co;2
[127]
Timmerman, S., Stachel, T., Koornneef, J.M., Smit, K.V., Harlou, R., Nowell, G.M., et al. (2023) Sublithospheric Diamond Ages and the Supercontinent Cycle. Nature, 623, 752-756. https://doi.org/10.1038/s41586-023-06662-9
[128]
Brusnitsyn, A.I. and Zhukov, I.G. (2005) The South Faizuly Manganese Deposit in the Southern Urals: Geology, Petrography, and Formation Conditions. LithologyandMineralResources, 40, 30-47. https://doi.org/10.1007/s10987-005-0004-1
[129]
Frolov, A.A. (1994) Ore-Bearing Volcanogenic Structures. “Nedra”, 285 p. (In Russian)
[130]
Sillitoe, R.H. and Bonham, H.F. (1984) Volcanic Landforms and Ore Deposits. EconomicGeology, 79, 1286-1298. https://doi.org/10.2113/gsecongeo.79.6.1286
[131]
Sillitoe, R.H. (2000) Gold-Rich Porphyry Deposits: Descriptive and Genetic Models and Their Role in Exploration and Discovery. SEGReviews, 13, 315-345.
[132]
Al-Ani, T., Molnár, F., Lintinen, P. and Leinonen, S. (2018) Geology and Mineralogy of Rare Earth Elements Deposits and Occurrences in Finland. Minerals, 8, Article No. 356. https://doi.org/10.3390/min8080356
[133]
Korzhinsky, M.A., Tkachenko, S.I., Shmulovich, K.I., Taran, Y.A. and Steinberg, G.S. (1994) Discovery of a Pure Rhenium Mineral at Kudriavy Volcano. Nature, 369, 51-52. https://doi.org/10.1038/369051a0
[134]
World Distribution of Uranium Deposits (UDEPO) (2018). https://www.iaea.org/publications/12345/world-distribution-of-uranium-deposits-udepo
[135]
García, A.C., Latifi, M., Amini, A. and Chaouki, J. (2020) Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals. Metals, 10, Article No. 1524. https://doi.org/10.3390/met10111524
[136]
Balaram, V. (2022) Rare Earth Element Deposits: Sources, and Exploration Strategies. Journal of the Geological Society of India, 98, 1210-1216. https://doi.org/10.1007/s12594-022-2154-3
[137]
Patel, K.S., Sharma, S., Maity, J.P., Martín-Ramos, P., Fiket, Ž., Bhattacharya, P., et al. (2023) Occurrence of Uranium, Thorium and Rare Earth Elements in the Environment: A Review. Frontiers in Environmental Science, 10, Article ID: 1058053. https://doi.org/10.3389/fenvs.2022.1058053
[138]
Strachimir Chterev, M. and Alexander, V. (2019) Improved Numerical Generalization of the Bethe-Weizsäcker Mass Formula for Prediction the Isotope Nuclear Mass, the Mass Excess Including of Artificial Elements 119 and 120. NuclearScience, 4, 11-22. https://doi.org/10.11648/j.ns.20190402.11
[139]
Goff, F. and McMurtry, G.M. (2000) Tritium and Stable Isotopes of Magmatic Waters. JournalofVolcanologyandGeothermalResearch, 97, 347-396. https://doi.org/10.1016/s0377-0273(99)00177-8
[140]
Jiang, S., He, M., Yue, W. and Liu, J. (2008) Tritium Released from Mantle Source: Implications for Natural Nuclear Fusion in the Earth’s Interior. JournalofFusionEnergy, 27, 346-354. https://doi.org/10.1007/s10894-008-9149-y
[141]
Alonso, M., Pérez, N.M., Hernández, P.A., Padrón, E., Melián, G., Rodríguez, F., et al. (2022) Thermal Energy and Diffuse 4he and 3he Degassing Released in Volcanic-Geothermal Systems. RenewableEnergy, 182, 17-31. https://doi.org/10.1016/j.renene.2021.10.016
[142]
McMurtry, G.M., Dasilveira, L.A., Horn, E.L., DeLuze, J.R. and Blessing, J.E. (2019) High 3He/4He Ratios in Lower East Rift Zone Steaming Vents Precede a New Phase of Kilauea 2018 Eruption by 8 Months. ScientificReports, 9, Article No. 11860. https://doi.org/10.1038/s41598-019-48268-0
[143]
Pourcelot, L., León Vintró, L., Mitchell, P.I., Burkitbayev, M., Uralbekov, B., Bolatov, A., et al. (2013) Hydrological Behaviour of Tritium on the Former Semipalatinsk Nuclear Test Site (Kazakhstan) Determined Using Stable Isotope Measurements. EurasianChemico-TechnologicalJournal, 15, 293-299. https://doi.org/10.18321/ectj234
[144]
Jackson, T.R. (2021) Permeable Groundwater Pathways and Tritium Migration Patterns from the HANDLEY Underground Nuclear Test, Pahute Mesa, Nevada. Scientific Investigations Report 2021-5032. https://doi.org/10.3133/sir20215032
[145]
Timonova, L., Larionova, N., Aidarkhanova, A., Lyakhova, O., Aktayev, M., Serzhanova, Z., et al. (2024) Tritium Distribution in the “Water-Soil-Air” System in the Semipalatinsk Test Site. PLOSONE, 19, e0297017. https://doi.org/10.1371/journal.pone.0297017
[146]
Aktayev, M., Subbotin, S., Aidarkhanov, A., Aidarkhanova, A., Timonova, L. and Larionova, N. (2024) Characterization of Geological and Lithological Features in the Area Proximal to Tritium-Contaminated Groundwater at the Semipalatinsk Test Site. PLOSONE, 19, e0300971. https://doi.org/10.1371/journal.pone.0300971