全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reactive Oxygen Species (ROS) Generated on the Surface of (100)-Plane Grain-Oriented Copper Thin-Film

DOI: 10.4236/msa.2025.161003, PP. 27-45

Keywords: Copper, Crystal Planes, Antibacterial Activity, Reactive Oxygen Species, Chemiluminescence

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work aims to study the dependence of the antibacterial activity on the crystal plane of Cu. The generation of reactive oxygen species (ROS) on the thin film of Cu with grains oriented in the plane (100) was evaluated by chemiluminescence (CL). The authors proposed the generation mechanism of these three ROS on the outermost surface consisting of Cu2O thin film, CuO layer and bulk Cu.

References

[1]  Hirota, K., Tanaka, H., Maeda, T., Tsukagoshi, K., Kawakami, H., Ozawa, T., et al. (2023) Evaluation of Reactive Oxygen Species (ROS) Generated on the Surface of Copper Using Chemiluminesence. Materials Sciences and Applications, 14, 482-499.
https://doi.org/10.4236/msa.2023.1410032
[2]  Vincent, M. Duval, R.E., Hartemann, P. and Engels-Deutsch, M. (2018) Contact Killing and Antimicrobial Properties of Copper. Journal of Applied Microbiology, 124, 1032-1046.
https://doi.org/10.1111/jam.13681
[3]  Govind, V., Bharadwaj, S., Sai Ganesh, M.R., Vishnu, J., Shankar, K.V., Shankar, B., et al. (2021) Antiviral Properties of Copper and Its Alloys to Inactivate Covid-19 Virus: A Review. BioMetals, 34, 1217-1235.
https://doi.org/10.1007/s10534-021-00339-4
[4]  Grass, G., Rensing, C. and Solioz, M. (2011) Metallic Copper as an Antimicrobial Surface. Applied and Environmental Microbiology, 77, 1541-1547.
https://doi.org/10.1128/aem.02766-10
[5]  Salah, I., Parkin, I.P. and Allan, E. (2021) Copper as an Antimicrobial Agent: Recent Advances. RSC Advances, 11, 18179-18186.
https://doi.org/10.1039/d1ra02149d
[6]  Honkanen, M., Vippola, M. and Lepistö, T. (2008) Oxidation of Copper Alloys Studied by Analytical Transmission Electron Microscopy Cross-Sectional Specimens. Journal of Materials Research, 23, 1350-1357.
https://doi.org/10.1557/jmr.2008.0160
[7]  Onu, A.D., Iyun, J.F. and Idris, O.S. (2015) Kinetics and Stoichiometry of the Reduction of Hydrogen Peroxide by an Aminocarboxylactocobaltate(II) Complex in Aqueous Medium. Open Journal of Inorganic Chemistry, 5, 75-82.
https://doi.org/10.4236/ojic.2015.54009
[8]  Chambers, S.A. (2000) Epitaxial Growth and Properties of Thin Film Oxides. Surface Science Reports, 39, 105-180.
https://doi.org/10.1016/s0167-5729(00)00005-4
[9]  Yu, Z., Ramdani, J., Curless, J.A., Overgaard, C.D., Finder, J.M., Droopad, R., et al. (2000) Epitaxial Oxide Thin Films on Si (001). Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 18, 2139-2145.
https://doi.org/10.1116/1.1303737
[10]  Hilleringmann, U. (2023) Silicon Semiconductor Technology: Processing and Integration of Microelectronic Devices. English Edition, Springer Vieweg.
[11]  JX Home Page (2024) “Rolled Copper Foil” of JX Advanced Metal Corporation in Japanese.
https://www.jx-nmm.com/products/
[12]  Zhang, Y., Dai, M. and Yuan, Z. (2018) Methods for the Detection of Reactive Oxygen Species. Analytical Methods, 10, 4625-4638.
https://doi.org/10.1039/c8ay01339j
[13]  Reitberger, T. and Gierer, J. (1988) Chemiluminescence as a Means to Study the Role of Hydroxyl Radicals in Oxidative Processes. Holzforschung, 42, 351-356.
https://doi.org/10.1515/hfsg.1988.42.6.351
[14]  Tsukagoshi, K., Sumiyama, M., Nakajima, R., Nakayama, M. and Maeda, M. (1998) Chemiluminescence Property of the Luminol-Hydrogen Peroxide-Copper (II) System in the Presence of Surface-Carboxylated Microspheres. Analytical Sciences, 14, 409-412.
https://doi.org/10.2116/analsci.14.409
[15]  Yu, W. and Zhao, L. (2021) Chemiluminescence Detection of Reactive Oxygen Species Generation and Potential Environmental Applications. TrAC Trends in Analytical Chemistry, 136, Article ID: 116197.
https://doi.org/10.1016/j.trac.2021.116197
[16]  Oba, S. and Mukai, T. (2010) Mechanism and Condition of the Chemiluminescence of Luminol and Lucigenin. Keio University, Hiyoshi Review of Natural Science, 48, 31-57.
[17]  ThermoFisher Scientific Home Page (2024) Home Technical Reference Library the Molecular Probes Handbook List of Tables Scavengers of Reactive Oxygen Species (ROS)—Table 18.2.
https://www.thermofisher.com/
[18]  Greenwald, R.A. (1985) CRC Handbook of Methods for Oxygen Radical Research. CRC Press.
[19]  Billany, M.R., Khatib, K., Gordon, M. and Sugden, J.K. (1996) Alcohols and Ethanolamines as Hydroxyl Radical Scavengers. International Journal of Pharmaceutics, 137, 143-147.
https://doi.org/10.1016/0378-5173(96)04246-9
[20]  Wang, L., Li, B., Dionysiou, D.D., Chen, B., Yang, J. and Li, J. (2022) Overlooked Formation of H2O2 during the Hydroxyl Radical-Scavenging Process When Using Alcohols as Scavengers. Environmental Science & Technology, 56, 3386-3396.
https://doi.org/10.1021/acs.est.1c03796
[21]  Nishibori, S. and Namiki, K. (1998) Superoxide Anion Radical-Scavenging Ability of Fresh and Heated Vegetable Juices. Nippon Shokuhin Kagaku Kogaku Kaishi, 45, 144-148.
https://doi.org/10.3136/nskkk.45.144
[22]  Vinila, V.S. and Isac, J. (2022) Synthesis and Structural Studies of Superconducting Perovskite GdBa2Ca3Cu4O10.5+δ Nanosystems. In: Design, Fabrication, and Characterization of Multifunctional Nanomaterials, Elsevier, 319-341.
https://doi.org/10.1016/b978-0-12-820558-7.00022-4
[23]  Zhu, Y., Mimura, K. and Isshiki, M. (2002) Oxidation Mechanism of Copper at 623-1073 K. Materials Transactions, 43, 2173-2176.
https://doi.org/10.2320/matertrans.43.2173
[24]  Wang, J. and Cho, W.D. (2009) Oxidation Behavior of Pure Copper in Oxygen and/or Water Vapor at Intermediate Temperature. ISIJ International, 49, 1926-1931.
https://doi.org/10.2355/isijinternational.49.1926
[25]  Iijima, J. (2005) Oxidation Behaviour of Copper at Low Temperatures. Ph.D. Thesis, Tohoku University.
[26]  Homma, T. (1968) Microscopic Studies on the Oxidation Mechanism of Metal—A Role of Crystal Lattice Imperfection. Journal of Institute of Industrial Science, The University of Tokyo, 20, 349-353.
[27]  Jona, F. and Marcus, P.M. (2001) Structural Properties of Copper. Physical Review B, 63, Article ID: 094113.
https://doi.org/10.1103/physrevb.63.094113
[28]  Ito, T., Yamaguchi, H., Okabe, K. and Masumi, T. (1998) Single-Crystal Growth and Characterization of Cu2O and CuO. Journal of Materials Science, 33, 3555-3566.
https://doi.org/10.1023/a:1004690809547
[29]  Galaso, F.S. (1975) Structure and Properties of Inorganic Solids. Pergamon Press.
[30]  Atomicradius.
https://en.wikipedia.org/wiki/atomicradius
[31]  Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32, 751-767.
https://doi.org/10.1107/s0567739476001551
[32]  Narushima, T., Goto, T., Hirai, T. and Iguchi, Y. (1997) High-Temperature Oxidation of Silicon Carbide and Silicon Nitride. Materials Transactions, JIM, 38, 821-835.
https://doi.org/10.2320/matertrans1989.38.821

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133