全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamic Violation of Bell’s Inequalities in the Angular Momentum Representation

DOI: 10.4236/jmp.2025.161010, PP. 228-247

Keywords: Density Matrix, Angular Momentum, Bell Inequality, Entanglement

Full-Text   Cite this paper   Add to My Lib

Abstract:

A parametrization of density matrices of d dimensions in terms of the raising J + and lowering J angular momentum operators is established together with an implicit connection with the generalized Bloch-GellMann parameters. A general expression for the density matrix of the composite system of angular momenta j 1 and j 2 is obtained. In this matrix representation violations of the Bell-Clauser-Horne-Shimony-Holt inequalities are established for the X -states of a qubit-qubit, pure and mixed, composite system, as well as for a qubit-qutrit density matrix. In both cases maximal violation of the Bell inequalities can be reached, i.e., the Cirel’son limit. A correlation between the entanglement measure and a strong violation of the Bell factor is also given. For the qubit-qutrit composite system a time-dependent convex combination of the density matrix of the eigenstates of a two-particle Hamiltonian system is used to determine periodic maximal violations of the Bell’s inequality.

References

[1]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.
https://doi.org/10.1103/physrev.47.777
[2]  Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics Physique Fizika, 1, 195-200.
https://doi.org/10.1103/physicsphysiquefizika.1.195
[3]  Bell, J.S. (1966) On the Problem of Hidden Variables in Quantum Mechanics. Reviews of Modern Physics, 38, 447-452.
https://doi.org/10.1103/revmodphys.38.447
[4]  Bohm, D. and Aharonov, Y. (1957) Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky. Physical Review, 108, 1070-1076.
https://doi.org/10.1103/physrev.108.1070
[5]  Clauser, J.F. and Shimony, A. (1978) Bell’s Theorem. Experimental Tests and Implications. Reports on Progress in Physics, 41, 1881-1927.
https://doi.org/10.1088/0034-4885/41/12/002
[6]  Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 28, 938-941.
https://doi.org/10.1103/physrevlett.28.938
[7]  Aspect, A., Grangier, P. and Roger, G. (1982) Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49, 91-94.
https://doi.org/10.1103/physrevlett.49.91
[8]  Lo, T.K. and Shimony, A. (1981) Proposed Molecular Test of Local Hidden-Variables Theories. Physical Review A, 23, 3003-3012.
https://doi.org/10.1103/physreva.23.3003
[9]  Aspect, A. (1976) Proposed Experiment to Test the Nonseparability of Quantum Mechanics. Physical Review D, 14, 1944-1951.
https://doi.org/10.1103/physrevd.14.1944
[10]  Khalfin, L.A. and Tsirelson, B.S. (1992) Quantum/Classical Correspondence in the Light of Bell’s Inequalities. Foundations of Physics, 22, 879-948.
https://doi.org/10.1007/bf01889686
[11]  Cirel’son, B.S. (1980) Quantum Generalizations of Bell’s Inequality. Letters in Mathematical Physics, 4, 93-100.
https://doi.org/10.1007/bf00417500
[12]  Buhrman, H. and Massar, S. (2005) Causality and Tsirelson’s Bounds. Physical Review A, 72, Article ID: 052103.
https://doi.org/10.1103/physreva.72.052103
[13]  Gisin, N. (1991) Bell’s Inequality Holds for All Non-Product States. Physics Letters A, 154, 201-202.
https://doi.org/10.1016/0375-9601(91)90805-i
[14]  Leslie, N., Devin, J. and Lynn, T.W. (2019) Maximal LELM Distinguishability of Qubit and Qutrit Bell States Using Projective and Non-Projective Measurements.
https://arxiv.org/abs/1903.02655
[15]  Méndez Martínez, J.M. (2023) Nonlocal Correlations of a Fully Entangled Qubit-Qutrit Bell Scenario. Physics Letters A, 492, Article ID: 129216.
https://doi.org/10.1016/j.physleta.2023.129216
[16]  Bernal, A., Casas, J.A. and Moreno, J.M. (2024) Optimal Bell Inequalities for Qubitqudit Systems.
https://arxiv.org/abs/2404.02092
[17]  Sorella, S.P. (2024) Bell’s and Mermin’s Inequalities, Entangled Coherent States and Unitary Operators. International Journal of Theoretical Physics, 63, Article No. 227.
https://doi.org/10.1007/s10773-024-05764-y
[18]  Gisin, N. and Peres, A. (1992) Maximal Violation of Bell’s Inequality for Arbitrarily Large Spin. Physics Letters A, 162, 15-17.
https://doi.org/10.1016/0375-9601(92)90949-m
[19]  Peruzzo, G. and Sorella, S.P. (2023) Entanglement and Maximal Violation of the CHSH Inequality in a System of Two Spins J: A Novel Construction and Further Observations. Physics Letters A, 474, Article ID: 128847.
https://doi.org/10.1016/j.physleta.2023.128847
[20]  Peres, A. (1992) Finite Violation of a Bell Inequality for Arbitrarily Large Spin. Physical Review A, 46, 4413-4414.
https://doi.org/10.1103/physreva.46.4413
[21]  Gerry, C.C. and Albert, J. (2005) Finite Violations of a Bell Inequality for High Spin: An Optical Realization. Physical Review A, 72, Article ID: 043822.
https://doi.org/10.1103/physreva.72.043822
[22]  Werner, R.F. (1989) Quantum States with Einstein-Podolsky-Rosen Correlations Admitting a Hidden-Variable Model. Physical Review A, 40, 4277-4281.
https://doi.org/10.1103/physreva.40.4277
[23]  Rau, A.R.P. (2009) Algebraic Characterization of x-States in Quantum Information. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 412002.
https://doi.org/10.1088/1751-8113/42/41/412002
[24]  Kelleher, C., Holweck, F., Lévay, P. and Saniga, M. (2021) X-States from a Finite Geometric Perspective. Results in Physics, 22, Article ID: 103859.
https://doi.org/10.1016/j.rinp.2021.103859
[25]  Rau, A.R.P. (2000) Manipulating Two-Spin Coherences and Qubit Pairs. Physical Review A, 61, Article ID: 032301.
https://doi.org/10.1103/physreva.61.032301
[26]  Brüning, E., Mäkelä, H., Messina, A. and Petruccione, F. (2012) Parametrizations of Density Matrices. Journal of Modern Optics, 59, 1-20.
https://doi.org/10.1080/09500340.2011.632097
[27]  Horodecki, R. (2021) Quantum Information. Acta Physica Polonica A, 139, 197-2018.
https://doi.org/10.12693/aphyspola.139.197
[28]  Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters, 23, 880-884.
https://doi.org/10.1103/physrevlett.23.880
[29]  Plenio, M.B. (2005) Logarithmic Negativity: A Full Entanglement Monotone That Is Not Convex. Physical Review Letters, 95, Article ID: 090503.
https://doi.org/10.1103/physrevlett.95.090503
[30]  Verstraete, F. and Wolf, M.M. (2002) Entanglement versus Bell Violations and Their Behavior under Local Filtering Operations. Physical Review Letters, 89, Article ID: 170401.
https://doi.org/10.1103/physrevlett.89.170401
[31]  Wootters, W.K. (1998) Entanglement of Formation of an Arbitrary State of Two Qubits. Physical Review Letters, 80, 2245-2248.
https://doi.org/10.1103/physrevlett.80.2245
[32]  Schlienz, J. and Mahler, G. (1995) Description of Entanglement. Physical Review A, 52, 4396-4404.
https://doi.org/10.1103/physreva.52.4396
[33]  Bennett, C.H., DiVincenzo, D.P., Smolin, J.A. and Wootters, W.K. (1996) Mixed-state Entanglement and Quantum Error Correction. Physical Review A, 54, 3824-3851.
https://doi.org/10.1103/physreva.54.3824
[34]  Rose, M.E. (2011) Elementary Theory of Angular Momentum. Dover Publications.
[35]  Messiah, A. (1981) Angular Momentum in Quantum Mechanics. Amsterdam.
[36]  Cirel’son, B.S. (1980) Quantum Generalizations of Bell’s Inequality. Letters in Mathematical Physics, 4, 93-100.
https://doi.org/10.1007/bf00417500

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133