A parametrization of density matrices of
dimensions in terms of the raising
and lowering
angular momentum operators is established together with an implicit connection with the generalized Bloch-GellMann parameters. A general expression for the density matrix of the composite system of angular momenta
and
is obtained. In this matrix representation violations of the Bell-Clauser-Horne-Shimony-Holt inequalities are established for the
-states of a qubit-qubit, pure and mixed, composite system, as well as for a qubit-qutrit density matrix. In both cases maximal violation of the Bell inequalities can be reached, i.e., the Cirel’son limit. A correlation between the entanglement measure and a strong violation of the Bell factor is also given. For the qubit-qutrit composite system a time-dependent convex combination of the density matrix of the eigenstates of a two-particle Hamiltonian system is used to determine periodic maximal violations of the Bell’s inequality.
References
[1]
Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780. https://doi.org/10.1103/physrev.47.777
[2]
Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics Physique Fizika, 1, 195-200. https://doi.org/10.1103/physicsphysiquefizika.1.195
[3]
Bell, J.S. (1966) On the Problem of Hidden Variables in Quantum Mechanics. Reviews of Modern Physics, 38, 447-452. https://doi.org/10.1103/revmodphys.38.447
[4]
Bohm, D. and Aharonov, Y. (1957) Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky. Physical Review, 108, 1070-1076. https://doi.org/10.1103/physrev.108.1070
[5]
Clauser, J.F. and Shimony, A. (1978) Bell’s Theorem. Experimental Tests and Implications. Reports on Progress in Physics, 41, 1881-1927. https://doi.org/10.1088/0034-4885/41/12/002
[6]
Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 28, 938-941. https://doi.org/10.1103/physrevlett.28.938
[7]
Aspect, A., Grangier, P. and Roger, G. (1982) Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49, 91-94. https://doi.org/10.1103/physrevlett.49.91
[8]
Lo, T.K. and Shimony, A. (1981) Proposed Molecular Test of Local Hidden-Variables Theories. Physical Review A, 23, 3003-3012. https://doi.org/10.1103/physreva.23.3003
[9]
Aspect, A. (1976) Proposed Experiment to Test the Nonseparability of Quantum Mechanics. Physical Review D, 14, 1944-1951. https://doi.org/10.1103/physrevd.14.1944
[10]
Khalfin, L.A. and Tsirelson, B.S. (1992) Quantum/Classical Correspondence in the Light of Bell’s Inequalities. Foundations of Physics, 22, 879-948. https://doi.org/10.1007/bf01889686
[11]
Cirel’son, B.S. (1980) Quantum Generalizations of Bell’s Inequality. Letters in Mathematical Physics, 4, 93-100. https://doi.org/10.1007/bf00417500
[12]
Buhrman, H. and Massar, S. (2005) Causality and Tsirelson’s Bounds. Physical Review A, 72, Article ID: 052103. https://doi.org/10.1103/physreva.72.052103
[13]
Gisin, N. (1991) Bell’s Inequality Holds for All Non-Product States. Physics Letters A, 154, 201-202. https://doi.org/10.1016/0375-9601(91)90805-i
[14]
Leslie, N., Devin, J. and Lynn, T.W. (2019) Maximal LELM Distinguishability of Qubit and Qutrit Bell States Using Projective and Non-Projective Measurements. https://arxiv.org/abs/1903.02655
[15]
Méndez Martínez, J.M. (2023) Nonlocal Correlations of a Fully Entangled Qubit-Qutrit Bell Scenario. Physics Letters A, 492, Article ID: 129216. https://doi.org/10.1016/j.physleta.2023.129216
[16]
Bernal, A., Casas, J.A. and Moreno, J.M. (2024) Optimal Bell Inequalities for Qubitqudit Systems. https://arxiv.org/abs/2404.02092
[17]
Sorella, S.P. (2024) Bell’s and Mermin’s Inequalities, Entangled Coherent States and Unitary Operators. International Journal of Theoretical Physics, 63, Article No. 227. https://doi.org/10.1007/s10773-024-05764-y
[18]
Gisin, N. and Peres, A. (1992) Maximal Violation of Bell’s Inequality for Arbitrarily Large Spin. Physics Letters A, 162, 15-17. https://doi.org/10.1016/0375-9601(92)90949-m
[19]
Peruzzo, G. and Sorella, S.P. (2023) Entanglement and Maximal Violation of the CHSH Inequality in a System of Two Spins J: A Novel Construction and Further Observations. Physics Letters A, 474, Article ID: 128847. https://doi.org/10.1016/j.physleta.2023.128847
[20]
Peres, A. (1992) Finite Violation of a Bell Inequality for Arbitrarily Large Spin. Physical Review A, 46, 4413-4414. https://doi.org/10.1103/physreva.46.4413
[21]
Gerry, C.C. and Albert, J. (2005) Finite Violations of a Bell Inequality for High Spin: An Optical Realization. Physical Review A, 72, Article ID: 043822. https://doi.org/10.1103/physreva.72.043822
[22]
Werner, R.F. (1989) Quantum States with Einstein-Podolsky-Rosen Correlations Admitting a Hidden-Variable Model. Physical Review A, 40, 4277-4281. https://doi.org/10.1103/physreva.40.4277
[23]
Rau, A.R.P. (2009) Algebraic Characterization of x-States in Quantum Information. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 412002. https://doi.org/10.1088/1751-8113/42/41/412002
[24]
Kelleher, C., Holweck, F., Lévay, P. and Saniga, M. (2021) X-States from a Finite Geometric Perspective. Results in Physics, 22, Article ID: 103859. https://doi.org/10.1016/j.rinp.2021.103859
[25]
Rau, A.R.P. (2000) Manipulating Two-Spin Coherences and Qubit Pairs. Physical Review A, 61, Article ID: 032301. https://doi.org/10.1103/physreva.61.032301
[26]
Brüning, E., Mäkelä, H., Messina, A. and Petruccione, F. (2012) Parametrizations of Density Matrices. Journal of Modern Optics, 59, 1-20. https://doi.org/10.1080/09500340.2011.632097
[27]
Horodecki, R. (2021) Quantum Information. Acta Physica Polonica A, 139, 197-2018. https://doi.org/10.12693/aphyspola.139.197
[28]
Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters, 23, 880-884. https://doi.org/10.1103/physrevlett.23.880
[29]
Plenio, M.B. (2005) Logarithmic Negativity: A Full Entanglement Monotone That Is Not Convex. Physical Review Letters, 95, Article ID: 090503. https://doi.org/10.1103/physrevlett.95.090503
[30]
Verstraete, F. and Wolf, M.M. (2002) Entanglement versus Bell Violations and Their Behavior under Local Filtering Operations. Physical Review Letters, 89, Article ID: 170401. https://doi.org/10.1103/physrevlett.89.170401
[31]
Wootters, W.K. (1998) Entanglement of Formation of an Arbitrary State of Two Qubits. Physical Review Letters, 80, 2245-2248. https://doi.org/10.1103/physrevlett.80.2245
[32]
Schlienz, J. and Mahler, G. (1995) Description of Entanglement. Physical Review A, 52, 4396-4404. https://doi.org/10.1103/physreva.52.4396
[33]
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A. and Wootters, W.K. (1996) Mixed-state Entanglement and Quantum Error Correction. Physical Review A, 54, 3824-3851. https://doi.org/10.1103/physreva.54.3824
[34]
Rose, M.E. (2011) Elementary Theory of Angular Momentum. Dover Publications.
[35]
Messiah, A. (1981) Angular Momentum in Quantum Mechanics. Amsterdam.
[36]
Cirel’son, B.S. (1980) Quantum Generalizations of Bell’s Inequality. Letters in Mathematical Physics, 4, 93-100. https://doi.org/10.1007/bf00417500