全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

木材/有机聚合物复合材料在柔性传感器方面的研究进展
Research Progress on Wood/Organic Polymer Composites in Flexible Sensors

DOI: 10.12677/amc.2025.131009, PP. 66-78

Keywords: 木材/有机聚合物,传感器
Wood/Organic Polymer Composites
, Sensors

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文综述了木材/有机聚合物复合材料在柔性传感器领域的研究进展。强调了木材作为一种可再生资源,其独特的层次结构和物理化学性质,以及如何通过有机聚合物的改性来增强其在传感器应用中的性能。详细介绍了木材的结构特性、改性方法,以及在压阻式、电容式、压电式和摩擦电式柔性传感器中的应用。特别指出了木材/有机聚合物复合材料在提高传感器输出性能、稳定性和环境适应性方面的优势,同时也讨论了存在的挑战和改进方向。
This article review provides a comprehensive overview of the research advancements in the field of flexible sensing applications of wood/organic polymer composites. It underscores the significance of wood as a renewable resource, highlighting its unique hierarchical structure and physicochemical properties, and discusses the enhancement of its performance in sensor applications through modification with organic polymers. The article elaborates on the structural characteristics of wood, methods of modification, and applications in resistive, capacitive, piezoelectric, and triboelectric flexible sensors. It particularly emphasizes the advantages of wood/organic polymer composites in improving sensor output performance, stability, and environmental adaptability, while also addressing the existing challenges and directions for improvement.

References

[1]  Ma, W., Lin, Y., Huang, C., Amin, M.A., El-Bahy, S.M., Melhi, S., et al. (2024) Fully Wood-Based High-Performance Triboelectric Nanogenerator for Smart Home. Advanced Composites and Hybrid Materials, 7, Article No. 126.
https://doi.org/10.1007/s42114-024-00937-z
[2]  Wang, S., Li, L., Zha, L., Koskela, S., Berglund, L.A. and Zhou, Q. (2023) Wood Xerogel for Fabrication of High-Performance Transparent Wood. Nature Communications, 14, Article No. 2827.
https://doi.org/10.1038/s41467-023-38481-x
[3]  Frey, M., Biffi, G., Adobes‐Vidal, M., Zirkelbach, M., Wang, Y., Tu, K., et al. (2019) Tunable Wood by Reversible Interlocking and Bioinspired Mechanical Gradients. Advanced Science, 6, Article ID: 1802190.
https://doi.org/10.1002/advs.201802190
[4]  Tan, Y., Wang, K., Dong, Y., Gong, S., Lu, Y., Shi, S.Q., et al. (2024) Programmable and Shape-Color Synchronous Dual-Response Wood with Thermal Stimulus. ACS Nano, 18, 6718-6730.
https://doi.org/10.1021/acsnano.3c03607
[5]  Qin, R., Nong, J., Wang, K., Liu, Y., Zhou, S., Hu, M., et al. (2024) Recent Advances in Flexible Pressure Sensors Based on MXene Materials. Advanced Materials, 36, Article ID: 2312761.
https://doi.org/10.1002/adma.202312761
[6]  Ma, H., Liu, C., Yang, Z., Wu, S., Jiao, Y., Feng, X., et al. (2024) Programmable and Flexible Wood-Based Origami Electronics. Nature Communications, 15, Article No. 9272.
https://doi.org/10.1038/s41467-024-53708-1
[7]  Tang, J., Gou, K., Wang, C., Wei, M., Tan, Q. and Weng, G. (2024) Self‐Powered and 3D Printable Soft Sensor for Human Health Monitoring, Object Recognition, and Contactless Hand Gesture Recognition. Advanced Functional Materials, 34, Article ID: 2411172.
https://doi.org/10.1002/adfm.202411172
[8]  Gao, C., Zhao, J., Liu, T., Luo, B., Chi, M., Zhang, S., et al. (2024) Strong and Stable Woody Triboelectric Materials Enabled by Biphase Blocking. Nano Letters, 24, 14932-14940.
https://doi.org/10.1021/acs.nanolett.4c02802
[9]  Gao, Y., Yu, Z., Qin, B., Chen, C., Ma, Z. and Yu, S. (2023) Superflexible Artificial Soft Wood. Advanced Materials, 35, Article ID: 15214095.
https://doi.org/10.1002/adma.202303518
[10]  Mei, B., Jiao, P., Xie, Y., Zhao, Y., Li, Y. and Liu, H. (2024) Wood Derived Conductive Aerogel with Ultrahigh Specific Surface Area and Exceptional Mechanical Flexibility for Pressure Sensing. Chemical Engineering Journal, 500, Article ID: 157020.
https://doi.org/10.1016/j.cej.2024.157020
[11]  Wang, Z., Han, X., Zhou, Z., Meng, W., Han, X., Wang, S., et al. (2021) Lightweight and Elastic Wood-Derived Composites for Pressure Sensing and Electromagnetic Interference Shielding. Composites Science and Technology, 213, Article 108931.
https://doi.org/10.1016/j.compscitech.2021.108931
[12]  Zhu, Y., Hu, X., Yan, X., Ni, W., Wu, M. and Liu, J. (2024) Nanoengineering Ultrathin Flexible Pressure Sensors with Superior Sensitivity and Wide Range via Nanocomposite Structures. ACS Sensors, 9, 4176-4185.
https://doi.org/10.1021/acssensors.4c01171
[13]  Zhou, J., Chen, H., Wu, Z., Zhou, P., You, M., Zheng, C., et al. (2025) 2D Ti3C2TX MXene-Based Light-Driven Actuator with Integrated Structure for Self-Powered Multi-Modal Intelligent Perception Assisted by Neural Network. Nano Energy, 134, Article ID: 110552.
https://doi.org/10.1016/j.nanoen.2024.110552
[14]  Wang, X., Tian, W., Ye, Y., Chen, Y., Wu, W., Jiang, S., et al. (2024) Surface Modifications towards Superhydrophobic Wood-Based Composites: Construction Strategies, Functionalization, and Perspectives. Advances in Colloid and Interface Science, 326, Article ID: 103142.
https://doi.org/10.1016/j.cis.2024.103142
[15]  余养伦, 王鲁飞, 于文吉. 我国木质重组材料研究现状与发展[J]. 材料工程, 2024, 52(10): 15-23.
[16]  范路洁. 基于木气凝胶的柔性压力传感器的研究[D]: [硕士学位论文]. 天津: 天津工业大学, 2021.
[17]  朱盛鼎, 陈冬冬, 雷静桃. 触觉传感器与电子皮肤研究进展[J]. 电子机械工程, 2022, 38(4): 4-9.
[18]  郭登康, 郭耐, 傅峰, 等. 有机物改性增强木材物理力学性能的研究进展[J]. 材料导报, 2023, 37(22): 262-272.
[19]  Chen, Y., Liu, C., Liang, Z., Ye, L., Liu, L., Liu, Z., et al. (2023) Hydrochromic Wood Biocomposites for Humidity and Moisture Detection. Chemical Engineering Journal, 465, Article ID: 142890.
https://doi.org/10.1016/j.cej.2023.142890
[20]  柯梦庆, 张肖凯, 周廷, 等. 低共熔溶剂预处理对北美赤杨木材性的影响[J]. 林业工程学报, 2024: 1-9.
[21]  赵金钰, 夏蕾, 张扬. 环氧树脂掺杂对地质聚合物木材胶黏剂性能的影响[J]. 北京林业大学学报, 2024, 46(8): 15-24.
[22]  Ma, X., Xiong, Y., Liu, Y., Han, J., Duan, G., Chen, Y., et al. (2022) When MOFs Meet Wood: From Opportunities toward Applications. Chem, 8, 2342-2361.
https://doi.org/10.1016/j.chempr.2022.06.016
[23]  Liu, Y., Lv, Z., Zhou, J., Cui, Z., Li, W., Yu, J., et al. (2024) Muscle‐Inspired Formable Wood‐Based Phase Change Materials. Advanced Materials, 2024, Article ID: 2406915.
https://doi.org/10.1002/adma.202406915
[24]  Tu, K., Puértolas, B., Adobes‐Vidal, M., Wang, Y., Sun, J., Traber, J., et al. (2020) Green Synthesis of Hierarchical Metal-Organic Framework/wood Functional Composites with Superior Mechanical Properties. Advanced Science, 7, Article ID: 1902897.
https://doi.org/10.1002/advs.201902897
[25]  Wang, Z., Qing, Y., Liu, Z., Wang, S., Wu, Y. and Yang, S. (2024) Enhancing Flame Retardancy and Smoke Suppression of Wood via In-Situ Synthesis of Amine-Phosphotungstic Acid Nanoparticles with Tunable Shapes. Construction and Building Materials, 456, Article ID: 139226.
https://doi.org/10.1016/j.conbuildmat.2024.139226
[26]  孟辰笑凝, 赵科岩, 高慧, 等. 有机烷氧基硅烷偶联剂在木材防腐中的应用[J]. 林产工业, 2020, 57(11): 65-68.
[27]  Weng, M., Zhou, J., Zhou, P., Shang, R., You, M., Shen, G., et al. (2024) Multi‐Functional Actuators Made with Biomass‐Based Graphene‐Polymer Films for Intelligent Gesture Recognition and Multi‐Mode Self‐Powered Sensing. Advanced Science, 11, Article ID: 2309846.
https://doi.org/10.1002/advs.202309846
[28]  Qiu, Y., Wang, F., Zhang, Z., Shi, K., Song, Y., Lu, J., et al. (2024) Quantitative Softness and Texture Bimodal Haptic Sensors for Robotic Clinical Feature Identification and Intelligent Picking. Science Advances, 10, eadp348.
https://doi.org/10.1126/sciadv.adp0348
[29]  Luo, T., Qi, J., Yu, J., Wang, C., Chu, F. and Wang, J. (2024) Lignin‐Based Macromolecular Photoinitiator for Non‐migration, Self‐Adhesive, and Water‐Resistant Eutectogels toward Underwater Reliable Communication. Advanced Functional Materials, 2024, Article ID: 2414481.
https://doi.org/10.1002/adfm.202414481
[30]  Zhang, G., Li, P., Wang, X., Xia, Y. and Yang, J. (2022) Flexible Battery‐Free Wireless Sensor Array Based on Functional Gradient‐Structured Wood for Pressure and Temperature Monitoring. Advanced Functional Materials, 33, Article ID: 2208900.
https://doi.org/10.1002/adfm.202208900
[31]  Nie, K., Wang, Z., Tang, R., Zheng, L., Li, C., Shen, X., et al. (2020) Anisotropic, Flexible Wood Hydrogels and Wrinkled, Electrodeposited Film Electrodes for Highly Sensitive, Wide-Range Pressure Sensing. ACS Applied Materials & Interfaces, 12, 43024-43031.
https://doi.org/10.1021/acsami.0c13962
[32]  Meng, Q., Ye, Z., Wang, Y., Liu, C., Sun, Q., Shamshina, J.L., et al. (2023) Self‐Micropatterned Wood Hydrophone for Underwater Detection. Advanced Functional Materials, 34, Article ID: 2304104.
https://doi.org/10.1002/adfm.202304104
[33]  Lai, Z., Xu, J., Bowen, C.R. and Zhou, S. (2022) Self-Powered and Self-Sensing Devices Based on Human Motion. Joule, 6, 1501-1565.
https://doi.org/10.1016/j.joule.2022.06.013
[34]  Luo, J., Liu, F., Yin, A., Qi, X., Liu, J., Ren, Z., et al. (2023) Highly Sensitive, Wide-Pressure and Low-Frequency Characterized Pressure Sensor Based on Piezoresistive-Piezoelectric Coupling Effects in Porous Wood. Carbohydrate Polymers, 315, Article ID: 120983.
https://doi.org/10.1016/j.carbpol.2023.120983
[35]  Wu, T., Lu, Y., Tao, X., Chen, P., Zhang, Y., Ren, B., et al. (2024) Superelastic Wood‐Based Nanogenerators Magnifying the Piezoelectric Effect for Sustainable Energy Conversion. Carbon Energy, 6, e561.
https://doi.org/10.1002/cey2.561
[36]  Jia, Q., Xu, S., Wang, C., Zhang, D., Zhang, K., Lu, C., et al. (2024) Functionalized Wood with Tunable Mechanically Toughness, Transparent and Conductivity for Multi-Functional Self-Powered Sensor. Nano Energy, 129, Article ID: 109981.
https://doi.org/10.1016/j.nanoen.2024.109981
[37]  Chen, C. and Hu, L. (2020) Nanoscale Ion Regulation in Wood‐Based Structures and Their Device Applications. Advanced Materials, 33, Article ID: 2002890.
https://doi.org/10.1002/adma.202002890
[38]  Pei, W., Yu, Y., Wang, P., Zheng, L., Lan, K., Jin, Y., et al. (2024) Research Trends of Bio-Application of Major Components in Lignocellulosic Biomass (Cellulose, Hemicellulose and Lignin) in Orthopedics Fields Based on the Bibliometric Analysis: A Review. International Journal of Biological Macromolecules, 267, Article ID: 131505.
https://doi.org/10.1016/j.ijbiomac.2024.131505
[39]  Zhou, J., Chen, H., Zhou, P., Peng, Q., Guo, Q., Wang, J., et al. (2023) Ti3C2Tx MXene Nanosheet-Functionalized Leathers for Versatile Wearable Electronics. ACS Applied Nano Materials, 6, 18150-18164.
https://doi.org/10.1021/acsanm.3c03414
[40]  Guo, Q., Guo, J., Chen, H., Zhou, P., Li, C., Yang, K., et al. (2023) Multi-Functional Graphene/Leather for Versatile Wearable Electronics. Journal of Materials Chemistry A, 11, 11773-11785.
https://doi.org/10.1039/d3ta01087b
[41]  Shi, X., Luo, J., Luo, J., Li, X., Han, K., Li, D., et al. (2022) Flexible Wood-Based Triboelectric Self-Powered Smart Home System. ACS Nano, 16, 3341-3350.
https://doi.org/10.1021/acsnano.1c11587

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133