全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLO算法的路面缺陷识别方法研究
Research on Road Defect Detection Method Based on YOLO Algorithm

DOI: 10.12677/csa.2025.151012, PP. 117-125

Keywords: YOLO11,路面缺陷检测,目标检测,深度学习
YOLO11
, Road Defect Detection, Object Detection, Deep Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对路面缺陷检测方法在精度、效率及小目标检测能力方面的不足,提出了一种基于YOLO11的改进算法。通过设计EIEStem模块替代骨干网络的前两个卷积层,融合边缘特征和空间信息,有效提升了模型对小缺陷的检测能力。实验结果表明,改进算法在mAP0.5、推理速度(FPS)等指标上均展现显著优势:在mAP0.5上达到0.854,比原YOLO11提高1.5%,相比Faster-RCNN提升12.7%;推理速度达到113.3 FPS,相较YOLO11提高了约15.8%,远超Faster-RCNN的21 FPS。此外,计算量仅小幅增加,GFLOPs从6.3增至6.4,验证了改进算法的高效性与优越性。
This paper addresses the limitations of road defect detection methods in terms of accuracy, efficiency, and small object detection capabilities. An improved algorithm based on YOLO11 is proposed by introducing the EIEStem module to replace the first two convolutional layers of the backbone network, integrating edge features and spatial information to enhance the detection capability for small defects. Experimental results demonstrate that the improved algorithm achieves significant advantages in key metrics such as mAP0.5 and FPS: achieving an mAP0.5 of 0.854, which is a 1.5% improvement over the original YOLO11 and a 12.7% increase compared to Faster-RCNN. It achieves an inference speed of 113.3 FPS, approximately 15.8% faster than YOLO11 and far exceeding the 21 FPS of Faster-RCNN. Additionally, the computational cost only increased slightly, with GFLOPs rising from 6.3 to 6.4, confirming the efficiency and superiority of the improved algorithm.

References

[1]  陈迈. 基于数据增强的公路路面缺陷检测方法研究[D]: [硕士学位论文]. 长春: 吉林大学, 2023.
[2]  陈建瑜, 邹春龙, 王生怀, 等. 改进YOLOv5的路面缺陷快速检测方法研究[J]. 电子测量技术, 2023, 46(10): 129-135.
[3]  孔超. 基于YOLO算法深度学习的路面病害检测方法研究[J]. 建筑机械化, 2024, 45(7): 24-27.
[4]  李军, 杨飞帆, 龚胜, 等. 基于视觉的轻量化路面异常检测算法[J]. 吉林大学学报(工学版), 2024: 1-9.
[5]  Kulambayev, B., Nurlybek, M., Astaubayeva, G., Tleuberdiyeva, G., Zholdasbayev, S. and Tolep, A. (2023) Real-Time Road Surface Damage Detection Framework Based on Mask R-CNN Model. International Journal of Advanced Computer Science and Applications, 14, 757-765.
https://doi.org/10.14569/ijacsa.2023.0140979

[6]  Fang, J., Qu, B. and Yuan, Y. (2021) Distribution Equalization Learning Mechanism for Road Crack Detection. Neurocomputing, 424, 193-204.
https://doi.org/10.1016/j.neucom.2019.12.057

[7]  张在岩, 宋伟东, 邬嘉晨. 改进YOLOv5的复杂场景下水泥路面病害检测[J]. 辽宁工程技术大学学报(自然科学版), 2024: 1-11.
[8]  周建新, 张媛, 贾梓涵, 等. 改进YOLOv8的路面缺陷检测算法[J]. 电子测量技术, 2024, 47(19): 146-154.
[9]  Naddaf-Sh, S., Naddaf-Sh, M., Kashani, A.R. and Zargarzadeh, H. (2020) An Efficient and Scalable Deep Learning Approach for Road Damage Detection. 2020 IEEE International Conference on Big Data (Big Data), Atlanta, 10-13 December 2020, 5602-5608.
https://doi.org/10.1109/bigdata50022.2020.9377751

[10]  Li, K., Yang, J., Ma, S., Wang, B., Wang, S., Tian, Y., et al. (2024) Rethinking Lightweight Convolutional Neural Networks for Efficient and High-Quality Pavement Crack Detection. IEEE Transactions on Intelligent Transportation Systems, 25, 237-250.
https://doi.org/10.1109/tits.2023.3307286

[11]  Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X. and Ling, H. (2020) Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection. IEEE Transactions on Intelligent Transportation Systems, 21, 1525-1535.
https://doi.org/10.1109/tits.2019.2910595

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133