全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于因果分析算法的成都市AQI预测研究
Study on AQI Forecasting in Chengdu Based on Causal Analysis Algorithm

DOI: 10.12677/sa.2025.141024, PP. 251-257

Keywords: PCMCI,AQI,长短期记忆网络,因果分析
PCMCI
, AQI, LSTM, Causal Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文旨在利用因果分析算法PCMCI对成都市空气质量指数(AQI)进行预测。随着城市化的加速,空气污染问题日益严重,因此准确预测AQI对于改善城市空气质量具有重要意义。本文基于成都市AQI预测的背景与现状,介绍了PCMCI算法的基本原理及其在因果分析中的应用。随后,对成都市2019至2023年的AQI数据进行因果分析,识别出与AQI相关的因果变量,并采用长短期记忆网络进行AQI预测。实验结果表明,本文所提方法的预测结果的均方根误差RMSE相较于传统的ARIMA预测模型和单变量LSTM模型预测精度分别提升了22.14%和9.58%,平均绝对百分比误差MAPE相较于传统的ARIMA预测模型和单变量LSTM模型预测精度分别提升了30.98%和11.59%。基于PCMCI提取的因果关系变量能显著提升AQI预测的准确性,能够为成都市的空气质量管理提供有效的决策支持。
The aim of this paper is to forecast the air quality index (AQI) in Chengdu by using the causal analysis algorithm PCMCI. With the acceleration of urbanization, the problem of air pollution is becoming more and more serious, so it is of great significance to accurately predict AQI for improving urban air quality. Based on the background and current situation of AQI prediction in Chengdu, this paper introduces the basic principles of PCMCI algorithm and its application in causal analysis. Subsequently, the AQI data of Chengdu from 2019 to 2023 are causally analyzed to identify the causal variables related to AQI, and the long and short-term memory network is used for AQI prediction. The experimental results show that the root mean square error RMSE of the prediction results of the method proposed in this paper improves the prediction accuracy by 22.14% and 9.58% compared with the traditional ARIMA prediction model and univariate LSTM model, respectively, and the mean absolute percentage error MAPE improves the prediction accuracy by 30.98% compared with the traditional ARIMA prediction model and univariate LSTM model by 30.98% and 11.59%. The causal variables extracted based on PCMCI can significantly improve the accuracy of AQI prediction and provide effective decision support for air quality management in Chengdu.

References

[1]  朱艺轩. 基于机器学习的成都市空气质量预测[J]. 信息记录材料, 2024, 25(7): 160-162.
[2]  李高平, 邱治邦, 苗加庆, 等. 基于LSTM的空气质量预测模型[J]. 西南民族大学学报(自然科学版), 2023, 49(1): 67-73.
[3]  徐艳平, 陈义安. 基于随机森林回归和气象参数的城市空气质量预测模型——以重庆市为例[J]. 重庆工商大学学报(自然科学版), 2021, 38(6): 118-124.
[4]  郑红, 程云辉, 胡阳生, 等. 基于MLP&ST模型的空气质量预测[J]. 应用科学学报, 2022, 40(2): 302-315.
[5]  朱菊香, 谷卫, 任明煜, 等. 基于SWT-ISSA-LSTM的地铁空气质量预测建模[J]. 国外电子测量技术, 2023, 42(7): 164-174.
[6]  Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. and Sejdinovic, D. (2019) Detecting and Quantifying Causal Associations in Large Nonlinear Time Series Datasets. Science Advances, 5, eaau4996.
https://doi.org/10.1126/sciadv.aau4996
[7]  迟赫. 因果推断视角下碳排放权价格影响因素分析[D]: [硕士学位论文]. 北京: 中央财经大学, 2023.
[8]  杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6+26.
[9]  栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304-311.
[10]  路凯丽, 杨露, 李涛. 基于集成深度学习模型的空气质量指数预测[J]. 南京信息工程大学学报, 2024, 16(1): 56-65.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133