|
时变混合双分数Brown运动下的欧式期权定价
|
Abstract:
金融资产价格具有“尖峰厚尾”和长期记忆等分形特征,采用具有GARCH结构的时变混合双分数Brown运动可以描述其动态变化过程。首先,构建混合双分数Brown运动下的期权定价模型和时变参数模型;再选取上证50ETF指数、香港恒生指数、日本东证指数的历史收盘价进行实证分析,并与传统的BS模型、混合双分数Brown运动定价等模型进行对比研究。结果发现:时变混合双分数Brown运动下的欧式期权定价模型在期权定价精度方面具有明显优势,特别是在发达证券市场上表现更好,同时具有较强的预测能力。对金融衍生品、风险管理、投资管理等方面都具有一定的参考意义和实用价值。
Financial asset prices have fractal characteristics such as “sharp peaks and thick tails” and long-term memory, and its dynamic process can be described by the time-varying mixed double-fractional Brownian motion with GARCH structure. Firstly, the option pricing model and the time-varying parameter model are constructed under the hybrid two-fractional Brown’s motion; then, the historical closing prices of SSE 50 ETF index, Hong Kong Hang Seng index, and Japan TSE index are selected for the empirical analysis, and compared with the traditional BS model and the hybrid two-fractional Brown’s motion pricing model. The results show that the European option pricing model with time-varying hybrid bifractional Brownian motion has obvious advantages in terms of option pricing accuracy, especially in the developed stock markets, and has strong forecasting ability. It has certain reference significance and practical value for financial derivatives, risk management and investment management.
[1] | 张亚茹, 夏莉, 张典秋. 混合双分数布朗运动下的永久美式回望期权定价[J/OL]. 山东大学学报(理学版), 2024, 59(4): 98-107. http://lxbwk.njournal.sdu.edu.cn/CN/abstract/abstract3932.shtml , 2024-01-03. |
[2] | Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-654. https://doi.org/10.1086/260062 |
[3] | Greene, M.T. and Fielitz, B.D. (1977) Long-Term Dependence in Common Stock Returns. Journal of Financial Economics, 4, 339-349. https://doi.org/10.1016/0304-405x(77)90006-x |
[4] | Lo, A.W. (1991) Long-Term Memory in Stock Market Prices. Econometrica, 59, 1279-1313. |
[5] | Peters, E.E. (1994) Fractal Market Analysis: Applying Chaos theory to Investment and Economics. Wiley. http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/28775 |
[6] | 毛娄萍. 混合分数跳-扩散模型下亚式幂期权的定价[D]: [硕士学位论文]. 武汉: 华中师范大学, 2019. |
[7] | Houdré, C. and Villa, J. (2003) An Example of Infinite Dimensional Quasi-Helix. Contemporary Mathematics, 336, 195-202. |
[8] | 徐峰. 混合双分数布朗运动下欧式期权的定价[J]. 苏州市职业大学学报, 2015, 26(1): 50-53. |
[9] | 杨晓辉, 王裕彬. 基于GARCH模型的波动率与隐含波动率的实证分析——以上证50ETF期权为例[J]. 金融理论与实践, 2019(5): 80-85. |
[10] | Andersen, T.G. and Bollerslev, T. (1998) Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts. International Economic Review, 39, 885-905. https://doi.org/10.2307/2527343 |
[11] | Merton, R.C. (1980) On Estimating the Expected Return on the Market: An Exploratory Investigation. Journal of Financial Economics, 8, 323-361. https://doi.org/10.1016/0304-405x(80)90007-0 |
[12] | Bandi, F.M., Russell, J.R. and Yang, C. (2008) Realized Volatility Forecasting and Option Pricing. Journal of Econometrics, 147, 34-46. https://doi.org/10.1016/j.jeconom.2008.09.002 |
[13] | Stentoft, L. (2008) Option Pricing Using Realized Volatility. Department of Economics and Business Economics, Aarhus University. https://doi.org/10.2139/ssrn.1148148 |
[14] | Corsi, F., et al. (2013) Realizing Smiles: Options Pricing with Realized Volatility. Journal of Financial Economics, 107, 284-304. |
[15] | Heston, S.L. and Nandi, S. (2000) A Closed-Form GARCH Option Valuation Model. Review of Financial Studies, 13, 585-625. https://doi.org/10.1093/rfs/13.3.585 |
[16] | 张波, 蒋远营. 基于中国股票高频交易数据的随机波动建模与应用[J]. 统计研究, 2017, 34(3): 107-117. |
[17] | Huang, Z., Wang, T. and Hansen, P.R. (2016) Option Pricing with the Realized GARCH Model: An Analytical Approximation Approach. Journal of Futures Markets, 37, 328-358. https://doi.org/10.1002/fut.21821 |
[18] | 郑尊信, 王华然, 朱福敏, 基于Levy-GARCH模型的上证50ETF市场跳跃行为与波动特征研究[J]. 中国管理科学, 2019, 27(2): 41-52. |
[19] | Wang, Q. and Wang, Z. (2020) VIX Valuation and Its Futures Pricing through a Generalized Affine Realized Volatility Model with Hidden Components and Jump. Journal of Banking & Finance, 116, Article ID: 105845. https://doi.org/10.1016/j.jbankfin.2020.105845 |
[20] | 史永东, 程航, 王光涛. 时变分数布朗运动下的GARCH族欧式期权定价研究[J]. 系统工程理论与实践, 2017, 37(10): 2527-2538. |
[21] | 郑振龙, 黄薏舟. 波动率预测: GARCH模型与隐含波动率[J]. 数量经济技术经济研究, 2010, 27(1): 140-150. |
[22] | Hurst, H.E. (1951) Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116, 770-799. |
[23] | 余湄, 程志勇, 邓军等. 一个新的期权定价方法: 基于混合次分数布朗运动的新视角[J]. 系统工程理论与实践, 2021, 41(11): 2761-2776. |
[24] | Zhang, X. and Xiao, W. (2017) Arbitrage with Fractional Gaussian Processes. Physica A: Statistical Mechanics and Its Applications, 471, 620-628. |
[25] | 程敏. 混合双分数布朗运动下期权的定价研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨商业大学, 2021. |
[26] | 姜礼尚. 期权定价的数学模型和方法[M]. 第2版. 北京: 高等教育出版社, 2008. |