全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

河水富营养化的评价与管理
Evaluation and Management of Eutrophication in River Water

DOI: 10.12677/aep.2025.151016, PP. 124-128

Keywords: 综合管理,富营养化,可持续发展
Integrated Management
, Eutrophication, Sustainable Development

Full-Text   Cite this paper   Add to My Lib

Abstract:

农业废水、径流等工业废水具有降低水质的作用,导致河流富营养化。本文综述了河流富营养化的因素,并针对多种因素之间的相关作用进行联系与讨论。阐明富营养化对于河流生态系统的影响。提出维持流域可持续发展的有效措施,为降低河流的富营养化提出了合理化建议。
Agricultural wastewater, runoff and other industrial wastewater have the effect of reducing water quality, leading to eutrophication of rivers. This article provides an overview of the factors contributing to eutrophication in rivers and discusses the interrelationships among various factors. Elucidate the impact of eutrophication on river ecosystems. Effective measures have been proposed to maintain the sustainable development of the watershed, and rational suggestions have been put forward to reduce eutrophication of rivers.

References

[1]  刘莹慧, 卢俊平, 赵胜男, 等. 基于长时间序列乌梁素海水环境变化趋势及生态补水等关键驱动因子分析(2011-2020年) [J]. 湖泊科学, 2023, 35(6): 1939-1948.
[2]  李干蓉, 张友, 方小宁, 等. 灰色聚类分析法在锦江河水质富营养化评价中的应用[J]. 贵州农业科学, 2019, 47(6): 143-146.
[3]  窦小涵, 潘叶, 王腊春, 等. 基于模糊综合优化模型的水质评价与重金属污染健康风险分析——以贵州省铜仁市碧江区饮用水源地为例[J]. 水土保持通报, 2022, 42(1): 173-183, 190.
[4]  齐德轩, 马巍, 党承华, 等. 三峡水库支流库湾营养源解析及水体富营养化调控对策研究[J]. 中国水利水电科学研究院学报, 2021, 19(3): 318-328.
[5]  彭园睿, 何兴华, 杨春灿, 等. 大理西湖湿地景观中水体富营养化及截留功能的季节变化[J]. 生态学杂志, 2020, 39(12): 4078-4089.
[6]  Aizaki, M., Otsuki, A., Fukushima, T., Hosomi, M. and Muraoka, K. (1981) Application of Carlson’s Trophic State Index to Japanese Lakes and Relationships between the Index and Other Parameters. SIL Proceedings, 1922-2010, 21, 675-681.
https://doi.org/10.1080/03680770.1980.11897067

[7]  Al-Ghouti, M.A., Al-Kaabi, M.A., Ashfaq, M.Y. and Da’na, D.A. (2019) Produced Water Characteristics, Treatment and Reuse: A Review. Journal of Water Process Engineering, 28, 222-239.
https://doi.org/10.1016/j.jwpe.2019.02.001

[8]  An, B., Lee, S., Kim, H., Zhao, D., Park, J. and Choi, J. (2019) Organic/Inorganic Hybrid Adsorbent for Efficient Phosphate Removal from a Reservoir Affected by Algae Bloom. Journal of Industrial and Engineering Chemistry, 69, 211-216.
https://doi.org/10.1016/j.jiec.2018.09.029

[9]  Béchet, Q., Shilton, A. and Guieysse, B. (2013) Modeling the Effects of Light and Temperature on Algae Growth: State of the Art and Critical Assessment for Productivity Prediction during Outdoor Cultivation. Biotechnology Advances, 31, 1648-1663.
https://doi.org/10.1016/j.biotechadv.2013.08.014

[10]  Bordalo, A.A. and Savva-Bordalo, J. (2007) The Quest for Safe Drinking Water: An Example from Guinea-Bissau (West Africa). Water Research, 41, 2978-2986.
https://doi.org/10.1016/j.watres.2007.03.021

[11]  Béjaoui, B., Ottaviani, E., Barelli, E., Ziadi, B., Dhib, A., Lavoie, M., et al. (2018) Machine Learning Predictions of Trophic Status Indicators and Plankton Dynamic in Coastal Lagoons. Ecological Indicators, 95, 765-774.
https://doi.org/10.1016/j.ecolind.2018.08.041

[12]  Bouffard, D., Kiefer, I., Wüest, A., Wunderle, S. and Odermatt, D. (2018) Are Surface Temperature and Chlorophyll in a Large Deep Lake Related? An Analysis Based on Satellite Observations in Synergy with Hydrodynamic Modelling and in-Situ Data. Remote Sensing of Environment, 209, 510-523.
https://doi.org/10.1016/j.rse.2018.02.056

[13]  Søndergaard, M., Jensen, J.P. and Jeppesen, E. (2003) Role of Sediment and Internal Loading of Phosphorus in Shallow Lakes. Hydrobiologia, 506, 135-145.
https://doi.org/10.1023/b:hydr.0000008611.12704.dd

[14]  Cavalcante, H., Araújo, F., Noyma, N.P. and Becker, V. (2018) Phosphorus Fractionation in Sediments of Tropical Semiarid Reservoirs. Science of the Total Environment, 619, 1022-1029.
https://doi.org/10.1016/j.scitotenv.2017.11.204

[15]  Castrillo, M. and García, Á.L. (2020) Estimation of High Frequency Nutrient Concentrations from Water Quality Surrogates Using Machine Learning Methods. Water Research, 172, Article 115490.
https://doi.org/10.1016/j.watres.2020.115490

[16]  Chou, J., Ho, C. and Hoang, H. (2018) Determining Quality of Water in Reservoir Using Machine Learning. Ecological Informatics, 44, 57-75.
https://doi.org/10.1016/j.ecoinf.2018.01.005

[17]  Downing, J.A. and McCauley, E. (1992) The Nitrogen: Phosphorus Relationship in Lakes. Limnology and Oceanography, 37, 936-945.
https://doi.org/10.4319/lo.1992.37.5.0936

[18]  Dai, C., Qin, X.S., Tan, Q. and Guo, H.C. (2018) Optimizing Best Management Practices for Nutrient Pollution Control in a Lake Watershed under Uncertainty. Ecological Indicators, 92, 288-300.
https://doi.org/10.1016/j.ecolind.2017.05.016

[19]  von Einem, J. and Granéli, W. (2010) Effects of Fetch and Dissolved Organic Carbon on Epilimnion Depth and Light Climate in Small Forest Lakes in Southern Sweden. Limnology and Oceanography, 55, 920-930.
https://doi.org/10.4319/lo.2010.55.2.0920

[20]  Fan, C., Zhang, L., Wang, J., Zheng, C., Gao, G. and Wang, S. (2004) Processes and Mechanism of Effects of Sludge Dredging on Internal Source Release in Lakes. Chinese Science Bulletin, 49, 1853-1859.
https://doi.org/10.1007/bf03183413

[21]  Farabegoli, G., Chiavola, A. and Rolle, E. (2009) The Biological Aerated Filter (BAF) as Alternative Treatment for Domestic Sewage. Optimization of Plant Performance. Journal of Hazardous Materials, 171, 1126-1132.
https://doi.org/10.1016/j.jhazmat.2009.06.128

[22]  Hui, F., Guixiang, Y., Te, C., Jiayou, Z., Xiaolin, Z., Longgen, G., et al. (2013) Succession of Submerged Macrophyte Communities in Relation to Environmental Change in Lake Erhai Over the Past 50 Years. Journal of Lake Sciences, 25, 854-861.
https://doi.org/10.18307/2013.0609

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133