全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessing Floristic Diversity, Stand Structures, and Carbon Stocks in Sacred Forests of West Cameroon: Insights from Bandrefam and Batoufam

DOI: 10.4236/ojf.2025.151005, PP. 69-95

Keywords: Sacred Forests, Stand Structures, Carbon Stocks, West-Cameroon

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sacred forests play a valuable role in the conservation of local biodiversity and provide numerous ecosystem services in Cameroon. The aim of this study was to estimate floristic diversity, stand structures and carbon stocks in the sacred forests of Bandrefam and Batoufam (western Cameroon). The floristic inventory and the stand structures were carried out in 25 m × 25 m plots for individuals with diameters greater than 10 cm; 5 m × 5 m for individuals with diameters less than 10 cm. Carbon stocks were estimated using the non-destructive method and allometric equations. The floristic inventory identified 65 species divided into 57 genera and 30 families in the Bandrefam sacred forest and 45 species divided into 42 genera and 27 families in the Batoufam sacred forest. In the Bandrefam, the most important families are Phyllanthaceae (53.98%), Moraceae (21.69%), Lamiaceae (20.15%). At Batoufam, the most important families are Phyllanthaceae (39.73%), Fabaceae (28.47%), Araliaceae (23.77%). Malacantha alnifolia (55.14%), Vitex grandifolia (18.43%), Bosqueia angolensis (15.06%) were the most important species in Bandrefam. Otherwise, Malacantha alnifolia (28%), Polyscias fulva (22.73%), Psychotria sp. (21.28%) were the most important in Batoufam. The Bandrefam sacred forest has the highest tree density (2669 stems/ha). Total carbon stock is 484.88 ± 2.28 tC/ha at Batoufam and 313.95 ± 0.93 tC/ha at Bandrefam. The economic value varies between 5858.04 ± 27.62 USD/ha in Batoufam sacred forest and 3788.51 ± 11.26 USD/ha in Bandrefam sacred forest. The number of individuals and small-diameter trees has little influence on the carbon stocks in the trees. Medium-diameter trees store the most carbon, and very large-diameter trees, which are very poorly represented, store less carbon. In another way, wood density and the basal areas influence the carbon storage of the trees.

References

[1]  Abdullah, S, Khan, S. M., Haq, Z. U., & Ahmad, Z. (2022). Muslim Graveyard Groves. In C. Coggins, & B. Chen (Eds.), Sacred Forests of Asia (pp. 77-87). Routledge.
https://doi.org/10.4324/9781003143680-8
[2]  Addo-Fordjour, P., Obeng, S., Anning, A., & Addo, M. (2009). Floristic Composition, Structure and Natural Regeneration in a Moist Semideciduous Forest Following Anthropogenic Disturbances and Plant Invasion. International Journal of Biodiversity and Conservation, 1, 21-37.
[3]  Agbani, P. O., Amagnide, A., Goussanou, C., Azihou, F., & Sinsin, B. (2018). Structure des peuplements ligneux des formations végétales de la forêt sacrée de Nassou en zone soudanienne du Bénin. International Journal of Biological and Chemical Sciences, 12, 2519-2534.
https://doi.org/10.4314/ijbcs.v12i6.5
[4]  Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E. et al. (2014). A Large-Scale Field Assessment of Carbon Stocks in Human-Modified Tropical Forests. Global Change Biology, 20, 3713-3726.
https://doi.org/10.1111/gcb.12627
[5]  Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests (p. 134). FAO.
[6]  Busch, J., & Engelmann, J. (2017). Cost-Effectiveness of Reducing Emissions from Tropical Deforestation, 2016-2050. Environmental Research Letters, 13, Article ID: 015001.
https://doi.org/10.1088/1748-9326/aa907c
[7]  Cardelús, C. L., Woods, C. L., Bitew Mekonnen, A., Dexter, S., Scull, P., & Tsegay, B. A. (2019). Human Disturbance Impacts the Integrity of Sacred Church Forests, Ethiopia. PLOS ONE, 14, e0212430.
https://doi.org/10.1371/journal.pone.0212430
[8]  CDB (2004). Approche Par Écosystème (Lignes Directrices de la CDB) (p. 51). Secrétariat de la Convention sur la Diversité Biologique.
[9]  Cédric, C. D., Meyabeme Elono, A. L., Nfornkah, B. N., Forje, G. W., Nyong, P. A., Kaam, R. et al. (2022). Biodiversity and Ecosystem Services of Bamboo Carbon Stocks Regulation in the Western Highlands of Cameroon. Journal of Sustainable Forestry, 42, 1036-1048.
https://doi.org/10.1080/10549811.2022.2150417
[10]  Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a Worldwide Wood Economics Spectrum. Ecology Letters, 12, 351-366.
https://doi.org/10.1111/j.1461-0248.2009.01285.x
[11]  Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C. et al. (2014). Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Global Change Biology, 20, 3177-3190.
https://doi.org/10.1111/gcb.12629
[12]  COMIFAC (2015). Forests and Climate Change (p. 17). COMIFAC.
[13]  Cottam, G., & Curtis, J. T. (1956). The Use of Distance Measures in Phytosociological Sampling. Ecology, 37, 451-460.
https://doi.org/10.2307/1930167
[14]  Daget, J. (1976). Les méthodes mathématiques en écologie (p. 172). Masson.
[15]  Dar, J. A., Kothandaraman, S., Khare, P. K., & Khan, M. L. (2022). Sacred Groves of Central India: Diversity Status, Carbon Storage, and Conservation Strategies. Biotropica, 54, 1400-1411.
https://doi.org/10.1111/btp.13157
[16]  Dar, J. A., Subashree, K., Raha, D., Kumar, A., Khare, P. K., & Khan, M. L. (2019). Tree Diversity, Biomass and Carbon Storage in Sacred Groves of Central India. Environmental Science and Pollution Research, 26, 37212-37227.
https://doi.org/10.1007/s11356-019-06854-9
[17]  Donofrio S, Maguire P., Zwick S., & Merry W. (2020). Voluntary Carbon and the Post-Pandemic Recovery (p. 1-16). Ecosystem Marketplace.
[18]  Eggleston, H. S., Buendia, L., Miwa, K., Ngara, & Tanabe, K. (2006). IPCC Guidelines for National Greenhouse Gas Inventories (p. 32). U.S. Department of Energy, Office of Scientific and Technical Information.
[19]  Fayolle, A., Ngomanda, A., Mbasi, M., Barbier, N., Bocko, Y., Boyemba, F. et al. (2018). A Regional Allometry for the Congo Basin Forests Based on the Largest Ever Destructive Sampling. Forest Ecology and Management, 430, 228-240.
https://doi.org/10.1016/j.foreco.2018.07.030
[20]  Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The Relation between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. The Journal of Animal Ecology, 12, 42-58.
https://doi.org/10.2307/1411
[21]  Fournier, F., & Sasson, A. (1983). Tropical Forest Ecosystems of Africa (p. 471). Orstom-UNESCO.
[22]  Giriraj, A., Murthy, M. S. R., & Ramesh, B. R. (2008). Vegetation Composition, Structure and Patterns of Diversity: A Case Study from the Tropical Wet Evergreen Forests of the Western Ghats, India. Edinburgh Journal of Botany, 65, 447-468.
https://doi.org/10.1017/s0960428608004952
[23]  Guenodjo, K. P. M. (2021). Impact of Logging on Floristic Diversity and Carbon Stocks in the Dimako Communal Forest. Master’s Thesis, University of Yaoundé 1.
[24]  Guiffo, J. P. (2003). Les Bamilékés de l’intérieur et leurs problèmes (p. 258). Editions de l’Essoah.
[25]  IPCC (Intergovernmental Panel on Climate Change) (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC National Greenhouse Gas Inventories Programme-Technical Support Unit (Eds), 590 p.
[26]  Kayo, N. J. (2004). Runoff Erosion on the Slopes of the Bangou Massif. Master’s Thesis, University of Yaoundé I.
[27]  Kent, M., & Coker, P. (2003). Vegetation Description and Analysis—A Practical Approach (p. 354). John Wiley & Son.
[28]  Letouzey, R. (1985). Phytogeographic Study of Cameroon (p. 511). Editions P. Lechevalier.
[29]  Lounang, T. F. C. (2006). Mutations socio-économiques et recomposition des paysages à Batoufam (Ouest Cameroun). Master’s Thesis, University of Yaoundé I.
[30]  Lounang, T. F. C., Chimi, D. C., Tajuekem, V. C., Djibrillia, P., & Happi, Y. J. (2018). Diversity, Structure and Carbon Stocks from Three Pools in the Kouoghap Sacred Forest, Hedgerows and eucalyptus Plantations in the Batoufam Locality (West Cameroon). Applied Ecology and Environmental Sciences, 6, 160-169.
https://doi.org/10.12691/aees-6-4-7
[31]  Megevand, C., Mosnier, A., Hourticq, J., Sanders, K., Doetinchem, N., & Streck, C. (2013). Deforestation Trends in the Congo Basin Reconciling Economic Growth and Forest Protection (pp. 12-23). World Bank.
[32]  Mequanint, F., Wassie, A., Aynalem, S., Adgo, E., Nyssen, J., Frankl, A. et al. (2020). Biodiversity Conservation in the Sacred Groves of North-West Ethiopia: Diversity and Community Structure of Woody Species. Global Ecology and Conservation, 24, e01377.
https://doi.org/10.1016/j.gecco.2020.e01377
[33]  Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical Analysis of Root: Shoot Ratios in Terrestrial Biomes. Global Change Biology, 12, 84-96.
https://doi.org/10.1111/j.1365-2486.2005.001043.x
[34]  Mori, S. A., Boom, B. M., de Carvalino, A. M., & dos Santos, T. S. (1983). Ecological Importance of Myrtaceae in an Eastern Brazilian Wet Forest. Biotropica, 15, 68-70.
https://doi.org/10.2307/2388002
[35]  Ngounou, W. P. (2023). Wood Diversity and Carbon Stocks in the Sacred Forests of West Cameroon: The Case of the Commune of Bazou. Master’s Thesis, The University of Yaoundé I, 72 p.
[36]  Nkongmeneck, B. A., Francis, M. N., Nguenang, G. M., Beligne, V. T., Fongnzossie, E., Kemeuze, V. A., & Jiofack, R. B. (2010). Inventory, Mapping and Diagnostic Study of the Sacred Forests of Cameroon: Contribution to the Development of a National Strategy for Sustainable Management (pp. 181-182). Millennium Ecologic Museum.
[37]  Noumi, E. (2012). Ligneous Flora Diversity of a Submountain Forest of West Cameroon: The Kouoghap Sacral Forest of the Village Batoufam. Journal of Ecology and the Natural Environment, 4, 8-28.
https://doi.org/10.5897/jene10.063
[38]  Noumi, E., & Tagne Tiam, G. A. (2016). Floristic Inventory of Woody Species of the Oku Sacred Forest in the North-West Cameroon, Theoretical and Philosophical Approach. International Journal of Current Research in Biosciences and Plant Biology, 3, 66-91.
https://doi.org/10.20546/ijcrbp.2016.301.009
[39]  Ntomen, Y. F. A. (2020). Contribution of Individuals in the Undergrowth to Carbon Stocks: The Case of the Mindourou Community Forest. Ph.D. Thesis, University of Yaoundé 1.
[40]  Onana, J. M. (2011). The Vascular Plants of Cameroon: A Taxonomic Checklist with IUCN Assessments (p. 195). Darwin Initiative/National Herbarium of Cameroon.
[41]  Pala, N. A., Negi, A. K., Gokhale, Y., Aziem, S., Vikrant, K. K., & Todaria, N. P. (2013). Carbon Stock Estimation for Tree Species of Sem Mukhem Sacred Forest in Garhwal Himalaya, India. Journal of Forestry Research, 24, 457-460.
https://doi.org/10.1007/s11676-013-0341-1
[42]  Panzou, G. J. L., Doucet, J., Loumeto, J., Biwole, A., Bauwens, S., & Fayolle, A. (2016). Biomasse et stocks de carbone des forêts tropicales africaines (Synthèse bibliographique). BASE, 20, 508-522.
https://doi.org/10.25518/1780-4507.13232
[43]  Pielou, C. (1969). An Introduction to Mathematical Ecology (Vol VIII) (p. 241). John Wiley & Sons.
[44]  Ramade, F. (2003). Elements of Ecology: Fundamental Ecology. In Science International, Revue d’Écologie (La Terre et La Vie) (p. 457). Dunod.
[45]  Reitsma, T. M. (1988). Forest Vegetation of Gabon (p. 142). Tropenbos International.
[46]  Senterre, B. (2005). Methodological Research into the Vegetation Typology and Phyto-geography of the Dense Forests of Tropical Africa. Ph.D Thesis, Université Libre de Bruxelles.
[47]  Sewale, B., & Mammo, S. (2022). Analysis of Floristic Composition and Plant Community Types in Kenech Natural Forest, Kaffa Zone, Ethiopia. Trees, Forests and People, 7, Article ID: 100170.
https://doi.org/10.1016/j.tfp.2021.100170
[48]  Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication (p. 127). University Illinois Press.
[49]  Simpson, E. H. (1949). Measurement of Diversity. Nature, 163, 688-688.
https://doi.org/10.1038/163688a0
[50]  Sinthumule, N. I. (2024). Sacred Forests as Repositories of Local Biodiversity in Africa: A Systematic Review. Forest Science and Technology, 20, 337-348.
https://doi.org/10.1080/21580103.2024.2397522
[51]  Siraj, M., Zhang K., Sebsebe, D., & Zerihun, W. (2017). Floristic Composition and Plant Community Types in Maze National Park, Southwest Ethiopia. Applied Ecology and Environmental Research, 15, 245-262.
https://doi.org/10.15666/aeer/1501_245262
[52]  Sonké, B. (1998). Floristic and Structural Studies of the Forests of the Dja Wildlife Reserve (Cameroon). Ph.D. Thesis, University of Yaoundé I.
[53]  Sonké, B. (2004). Forest of the Dja Reserve (Cameroon). Floristic and Structural Studies, National Botanic Garden of Belgium. Scriota Botanica, 32, 114-127.
[54]  Sorensen, T. (1948). A Method of Establishing Group of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyse of the Vegetation on Danish Commons. Biologiske Skrifter/Kongelige Danske Videnskabernes Selskab, 5, 1-34.
[55]  Talukdar, S., & Gupta, A. (2018). Attitudes Towards Forest and Wildlife, and Conservation-Oriented Traditions, around Chakrashila Wildlife Sanctuary, Assam, India. Oryx, 52, 508-518.
https://doi.org/10.1017/s0030605316001307
[56]  The Angiosperm Phylogeny Group, Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Mabberley, D. J., Soltis, P. S., & Stevens, P. F. (2016). An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20.
[57]  Tiokeng, B., Ngougni, M. L., Nguetsop, V. F., Solefack, M. C. M., & Zapfack, L. (2020). Les Forêts Sacrées Dans Les Hautes Terres De l’OuestCameroun: Intérêt Dans La Conservation De La Biodiversité. European Scientific Journal ESJ, 16, 234-256.
https://doi.org/10.19044/esj.2020.v16n36p234
[58]  Tiokeng, B., Zapfack, L., Nguetsop, V. F., Saha, Z., Nchongboh, C. G., & Douanla, R. N. (2019). Sacred Forests in the Western Highlands-Cameroon: Ethnobotany Role and Indigenous Conservation of Biodiversity. Advance Research Journal of Multidisciplinary Discoveries, 35, 54-59.
[59]  Tsoumou, B. R., Lumandé, K. J., Kampe, J. P., & Nzila, J. D. (2016). Estimation of the Quantity of Carbon Sequestered by the Dimonika Model Forest (South-West of the Republic of Congo). Revue Scientifique et Technique Forêt et Environnement du Bassin du Congo, 6, 39-45.
http://dx.doi.org/10.5281/zenodo.48399
[60]  Tura, T. T., Argaw, M., & Eshetu, Z. (2013). Estimation of Carbon Stock in Church Forests: Implications for Managing Church Forest to Help with Carbon Emission Reduction. In W. Leal Filho, F. Mannke, R. Mohee, V. Schulte, & D. Surroop (Eds.), Climate-Smart Technologies (pp. 403-414). Springer.
https://doi.org/10.1007/978-3-642-37753-2_30
[61]  UNFCCC (United Nations Framework Convention on Climate Change) (2008)., Glossary CDM Terms. Version 11.0, 24 p.
[62]  Wilks, C., & Issembé, Y. (2000). Guide pratique d’identification: Les arbres de la Guinée équatoriale: Région continentale (p. 27). Projet CUREF.
[63]  Winrock International (2005). Guide de Mesure et de Suivi du Carbone dans les Forêts et Prairies Herbeuses (p. 38).
[64]  Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global Wood Density Database. Dryad.
http://hdl.handle.net/10255/dryad.235
[65]  Zapfack, L., Noiha, N. V., Dziedjou, K. P. J., Zemagho, L., & Fomete, N. T. (2013). Deforestation and Carbon Stocks in the Surroundings of Lobéké National Park (Cameroon) in the Congo Basin. Environment and Natural Resources Research, 3, 78-86.
https://doi.org/10.5539/enrr.v3n2p78

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133