|
风夹雹冲击光伏板耦合效应试验研究
|
Abstract:
应急灾害统计表明,我国强对流天气伴随的雷雨、大风及冰雹等所造成的风灾及雹灾城逐年递增趋势,而国内外针对风夹雹对农林、光伏及工程结构等冲击耦合效应机理研究基本空白。本文基于自研的冰雹粒子发射及数据采集系统,以风速、冰雹粒径及发射速度、冲击攻角为变量,系统性研究冰雹对光伏板冲击行为规律及风雹耦合作用机理。结果表明:冲击攻角对冰雹粒子冲击力峰值影响明显,冲击攻角越大,冲击力峰值越大,基于多元线性回归分析建立了冰雹冲击光伏板冲击力峰值的预测模型,拟合效果较好;风速对冰雹粒子冲击力峰值有影响,风速越大,冲击力峰值越大,且对于冲击力峰值而言,大尺寸冰雹粒子较小尺寸冰雹粒子变化对于速度的变化更为敏感;风速越大,光伏板风压越大,并伴随着更加显著的波动性;有风情况下天平所测得的力大于光伏板风压力与0风速下冰雹粒子冲击力的和,风与冰雹粒子之间存在一定的耦合效应。论文研究成果为光伏板在强对流天气所致风雹灾害的减灾防灾提供一定的理论参考。
Emergency disaster statistics show that the wind and hail damage caused by thunderstorms, strong winds and hail accompanied by strong convective weather in the country is increasing year by year. However, there is basically no research at home and abroad on the impact coupling effect of wind and hail on agriculture, forestry, photovoltaics and engineering structures. Based on a self-developed hail particle emission and data collection system, this article uses wind speed, hail particle size and emission speed, and impact angle of attack as variables to systematically study the impact behavior of hail on photovoltaic panels and the wind-hail coupling mechanism. The results show that the impact angle of attack has a significant impact on the peak impact force of hail particles. The greater the impact angle of attack, the greater the peak impact force. Based on multiple linear regression analysis, a prediction model for the peak impact force of hail impact on photovoltaic panels was established, and the fitting effect is good. The wind speed has an impact on the peak impact force of hail particles. The greater the wind speed, the greater the peak impact force. And for the impact In terms of force peak, changes in large-sized hail particles and smaller-sized hail particles are more sensitive to changes in velocity; the greater the wind speed, the greater the wind pressure on the photovoltaic panels, accompanied by more significant fluctuations; the balance measured by the balance in windy conditions The force obtained is greater than the sum of the wind pressure of the photovoltaic panel and the impact force of hail particles at 0 wind speed. There is a certain coupling effect between wind and hail particles. The research results of this paper provide certain theoretical references for disaster reduction and prevention of wind and hail disasters caused by photovoltaic panels in strong convective weather.
[1] | Guan, Y., Zheng, F., Zhang, P. and Qin, C. (2014) Spatial and Temporal Changes of Meteorological Disasters in China during 1950–2013. Natural Hazards, 75, 2607-2623. https://doi.org/10.1007/s11069-014-1446-3 |
[2] | 应急管理部发布2023年上半年全国自然灾害情况[J]. 防灾博览, 2023(4): 30-31. |
[3] | Lin, Y., Fan, J., Jeong, J., Zhang, Y., Homeyer, C.R. and Wang, J. (2021) Urbanization-Induced Land and Aerosol Impacts on Storm Propagation and Hail Characteristics. Journal of the Atmospheric Sciences, 78, 925-947. https://doi.org/10.1175/jas-d-20-0106.1 |
[4] | Tang, B.H., Gensini, V.A. and Homeyer, C.R. (2019) Trends in United States Large Hail Environments and Observations. NPJ Climate and Atmospheric Science, 2, Article No. 45. https://doi.org/10.1038/s41612-019-0103-7 |
[5] | Makarskas, V., Jurevičius, M., Zakis, J., Kilikevičius, A., Borodinas, S., Matijošius, J., et al. (2021) Investigation of the Influence of Hail Mechanical Impact Parameters on Photovoltaic Modules. Engineering Failure Analysis, 124, Article ID: 105309. https://doi.org/10.1016/j.engfailanal.2021.105309 |
[6] | Kilikevičienė, K., Matijošius, J., Fursenko, A. and Kilikevičius, A. (2019) Tests of Hail Simulation and Research of the Resulting Impact on the Structural Reliability of Solar Cells. Eksploatacja i Niezawodność—Maintenance and Reliability, 21, 275-281. https://doi.org/10.17531/ein.2019.2.12 |
[7] | Kilikevičienė, K., Matijošius, J., Kilikevičius, A., Jurevičius, M., Makarskas, V., Caban, J., et al. (2019) Research of the Energy Losses of Photovoltaic (PV) Modules after Hail Simulation Using a Newly-Created Testbed. Energies, 12, Article 4537. https://doi.org/10.3390/en12234537 |
[8] | 戴益民, 徐瑛, 李怿歆, 等. 工程结构抗冰雹冲击研究进展及展望[J]. 湖南大学学报(自然科学版), 2023, 50(1): 228-236. |
[9] | 谭丹, 黄玉霞, 沙宏娥. 甘肃省强对流天气特征分析[J]. 自然灾害学报, 2022, 31(2): 222-232. |
[10] | 陈跃浩, 黄鹤, 熊明明, 等. 天津地区冰雹气候特征及影响路径研究[J]. 自然灾害学报, 2022, 31(4): 107-115. |
[11] | 李红斌, 胡志群, 张靖萱. 一次强雹云过程冰雹增长机制分析及防雹探讨[J]. 自然灾害学报, 2021, 30(5): 64-71. |
[12] | Macdonald, J.R. and Stack, M.M. (2021) Some Thoughts on Modelling Hail Impact on Surfaces. Journal of Bio- and Tribo-Corrosion, 7, Article No. 37. https://doi.org/10.1007/s40735-020-00458-4 |
[13] | Liu, C., Deng, X., Liu, J., Peng, T., Yang, S. and Zheng, Z. (2020) Dynamic Response of Saddle Membrane Structure under Hail Impact. Engineering Structures, 214, Article ID: 110597. https://doi.org/10.1016/j.engstruct.2020.110597 |
[14] | 钟旻, 龙浩楠, 周占学, 周启港. 基于风洞试验的草原地貌太阳能光伏板抗风措施研究[J]. 自然灾害学报, 2023, 32(3): 64-73. |
[15] | 钟旻, 周启港, 周占学, 等. 不同山坡地形下光伏阵列风荷载干扰效应研究[J]. 自然灾害学报, 2023, 32(6): 104-112. |
[16] | 邹云峰, 李青婷, 殷梅子, 等. 跟踪式光伏结构风荷载规范规定值与风洞试验值对比[J]. 中南大学学报(自然科学版), 2022, 53(4): 1331-1340. |
[17] | 殷梅子, 邹云峰, 李青婷, 等. 单排跟踪式光伏结构风荷载风洞试验研究[J]. 铁道科学与工程学报, 2020, 17(9): 2354-2362. |
[18] | 马文勇, 马成成, 王彩玉, 等. 光伏阵列风荷载干扰效应风洞试验研究[J]. 实验流体力学, 2021, 35(4): 19-25. |
[19] | 楼文娟, 单弘扬, 杨臻, 等. 超大型阵列光伏板体型系数遮挡效应研究[J]. 建筑结构学报, 2021, 42(5): 47-54. |
[20] | Changnon, S.A. (1970) Hailstreaks. Journal of the Atmospheric Sciences, 27, 109-125. https://doi.org/10.1175/1520-0469(1970)027<0109:h>2.0.co;2 |
[21] | Schuster, S.S., Blong, R.J. and McAneney, K.J. (2006) Relationship between Radar-Derived Hail Kinetic Energy and Damage to Insured Buildings for Severe Hailstorms in Eastern Australia. Atmospheric Research, 81, 215-235. https://doi.org/10.1016/j.atmosres.2005.12.003 |
[22] | Willmot, E., Bussmann, S., Homeier, N. and Kubicek, A. (2017) Examples of Ground-Based Hail, Rain, and Wind Sensor Networks Operating in Real-Time. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 23-28 July 2017, 5987-5989. https://doi.org/10.1109/igarss.2017.8128374 |
[23] | Amiranashvili, A., Chikhladze, V., Gvasalia, G., et al. (2020) Statistical Characteristics of the Daily Max of Wind Speed in Kakheti in the Days with and without Hail Processes in 2017-2019. International Scientific Conference “Modern Problems of Ecology”, 7, 197-201. |
[24] | 雷雨顺, 吴宝俊, 吴正华. 冰雹概论[M]. 北京: 气象出版社, 1978: 25. |