|
基于机器学习的安徽省大别山区滑坡易发性研究
|
Abstract:
滑坡作为一种重大地质灾害,对人类生活和基础设施构成了严重威胁。因此,深入研究滑坡易发性,尤其是利用机器学习模型进行预测,具有重要的学术和实践意义。基于此,本文通过收集相关地质、气象和地形数据,构建滑坡易发性评价指标体系,并利用多种机器学习算法来评价滑坡易发性,通过比较不同算法的结果,探讨各算法的优缺点并绘制滑坡易发性区划图。研究结果表明:(1) 大别山区植被覆盖NDVI在0.7~0.8之间其滑坡点分布最密集,且在林地滑坡点分布最多。(2) 随机森林是滑坡易发性拟合最优的模型。在诸多因子分析中,高程、坡度、剖面曲率和多年平均降水对滑坡易发性有显著影响。大别山区的滑坡易发性高于周边地区,且南坡的滑坡易发性风险最大。
Landslides, as a major geological hazard, pose serious threats to human life and infrastructure. Therefore, in-depth research on landslide susceptibility, especially using machine learning models for prediction, holds significant academic and practical value. Based on this, this study collected relevant geological, meteorological, and topographical data to establish a landslide susceptibility evaluation index system. Multiple machine learning algorithms were employed to assess landslide susceptibility, and by comparing the results of different algorithms, the advantages and disadvantages of each were discussed, accompanied by the creation of a landslide susceptibility zoning map. The findings revealed that: (1) Landslide points are most densely distributed in the Dabie Mountains when vegetation cover NDVI ranges from 0.7 to 0.8, with the majority of landslides occurring in forested areas. (2) Random forest was identified as the optimal model for landslide susceptibility fitting. Among various factors analyzed, elevation, slope, profile curvature, and long-term average precipitation had significant impacts on landslide susceptibility. The landslide susceptibility of the Dabie Mountains is higher than that of surrounding areas, with the southern slopes exhibiting the highest landslide susceptibility risk.
[1] | 中华人民共和国自然资源部. 2022年中国自然资源统计公报[EB/OL]. https://www.cgs.gov.cn/xwl/zcwj/zhgll/202304/t20230415_729294.html, 2023-04-12. |
[2] | 张开. 滑坡国内外研究概况的综述[J]. 科技创新导报, 2012(4): 102-103. |
[3] | 连志鹏, 厉一宁, 刘磊, 等. 基于ArcGIS的湖北省远安县地质灾害风险定量评价[J]. 华南地质, 2022, 38(4): 680-688. |
[4] | 唐川, 马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学, 2015, 35(1): 91-98. |
[5] | 闫举生, 谭建民. 基于ANN和LR的远安县滑坡易发性评价[J]. 山西建筑, 2018, 44(20): 48-50. |
[6] | 李远远, 梅红波, 任晓杰, 等. 基于确定性系数和支持向量机的地质灾害易发性评价[J]. 地球信息科学学报, 2018, 20(12): 1699-1709. |
[7] | 邓念东, 石辉, 文强, 等. 信息量支持下的随机森林模型的崩塌易发性评价[J]. 科学技术与工程, 2021, 21(6): 2210-2217. |
[8] | Kalantar, B., Pradhan, B., Naghibi, S.A., Motevalli, A. and Mansor, S. (2017) Assessment of the Effects of Training Data Selection on the Landslide Susceptibility Mapping: A Comparison between Support Vector Machine (SVM), Logistic Regression (LR) and Artificial Neural Networks (ANN). Geomatics, Natural Hazards and Risk, 9, 49-69. https://doi.org/10.1080/19475705.2017.1407368 |
[9] | Chen, W., Li, W., Hou, E., Zhao, Z., Deng, N., Bai, H., et al. (2014) Landslide Susceptibility Mapping Based on GIS and Information Value Model for the Chencang District of Baoji, China. Arabian Journal of Geosciences, 7, 4499-4511. https://doi.org/10.1007/s12517-014-1369-z |
[10] | Chen, T., Niu, R. and Jia, X. (2016) A Comparison of Information Value and Logistic Regression Models in Landslide Susceptibility Mapping by Using GIS. Environmental Earth Sciences, 75, Article No. 867. https://doi.org/10.1007/s12665-016-5317-y |
[11] | Baeza, C. and Corominas, J. (2001) Assessment of Shallow Landslide Susceptibility by Means of Multivariate Statistical Techniques. Earth Surface Processes and Landforms, 26, 1251-1263. https://doi.org/10.1002/esp.263 |
[12] | 周超, 殷坤龙, 曹颖, 等. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学, 2020, 45(6): 1865-1876. |
[13] | Zhou, C., Cao, Y., Peres, D.J., Yin, K. and Chai, B. (2023) Editorial: Advancement in Quantitative Risk Analysis of Geological Disaster in Reservoir Areas. Frontiers in Earth Science, 11, Article 1148194. https://doi.org/10.3389/feart.2023.1148194 |
[14] | 周超, 甘露露, 王悦, 等. 综合非滑坡样本选取指数与异质集成机器学习的区域滑坡易发性建模[J]. 地球信息科学学报, 2023, 25(8): 1570-1585. |
[15] | Lee, S., Ryu, J., Lee, M. and Won, J. (2003) Use of an Artificial Neural Network for Analysis of the Susceptibility to Landslides at Boun, Korea. Environmental Geology, 44, 820-833. https://doi.org/10.1007/s00254-003-0825-y |
[16] | Achu, A.L., Aju, C.D., Di Napoli, M., Prakash, P., Gopinath, G., Shaji, E., et al. (2023) Machine-Learning Based Landslide Susceptibility Modelling with Emphasis on Uncertainty Analysis. Geoscience Frontiers, 14, Article ID: 101657. https://doi.org/10.1016/j.gsf.2023.101657 |
[17] | 武雪玲, 杨经宇, 牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1223-1232. |
[18] | 刘帅, 王涛, 曹佳文, 等. 基于优化随机森林模型的降雨群发滑坡易发性评价研究——以西秦岭极端降雨事件为例[J]. 地质通报, 2024, 43(6): 958-970. |
[19] | 李泽芝, 王新刚. 镇域尺度下秦巴山区堆积层滑坡易发性不同单元评价性能对比研究[J]. 西北地质, 2024, 57(1): 1-11. |
[20] | 王本栋, 李四全, 许万忠, 等. 基于3种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质, 2024, 57(1): 34-43. |
[21] | 林琴, 郭永刚, 吴升杰, 等. 基于梯度提升的优化集成机器学习算法对滑坡易发性评价: 以雅鲁藏布江与尼洋河两岸为例[J]. 西北地质, 2024, 57(1): 12-22. |
[22] | 王毅, 方志策, 牛瑞卿, 等. 基于深度学习的滑坡灾害易发性分析[J]. 地球信息科学学报, 2021, 23(12): 2244-2260. |
[23] | 王斌, 范冬林. 深度学习在遥感影像分类与识别中的研究进展综述[J]. 测绘通报, 2019, 65(2): 99-102. |
[24] | 陶翊婷. 基于深度学习的高空间分辨率遥感影像分类方法研究[D]: [博士学位论文]. 武汉: 武汉大学, 2019. |
[25] | 施慧慧, 徐雁南, 滕文秀, 等. 高分辨率遥感影像深度迁移可变形卷积的场景分类法[J]. 测绘学报, 2021, 50(5): 652-663. |
[26] | 黄武彪, 丁明涛, 王栋, 等. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价[J]. 地球科学, 2022, 47(6): 2015-2030. |
[27] | Chen, Z., Li, C. and Sanchez, R. (2015) Gearbox Fault Identification and Classification with Convolutional Neural Networks. Shock and Vibration, 2015, Article ID: 390134. https://doi.org/10.1155/2015/390134 |
[28] | Niu, Q., Cheng, W., Liu, Y., Xie, Y., Lan, H. and Cao, Y. (2012) Risk Assessment of Secondary Geological Disasters Induced by the Yushu Earthquake. Journal of Mountain Science, 9, 232-242. https://doi.org/10.1007/s11629-012-2076-4 |
[29] | 徐新良. 中国多年度地市行政区划边界数据[EB/OL]. 资源环境科学数据注册与出版系统. https://www.resdc.cn/, 2024-06-20. |
[30] | 童广勤. 三峡水库库首段斜坡变形时变特征研究[D]: [博士学位论文]. 武汉: 中国地质大学, 2015. |