|
多囊卵巢综合症与表观遗传DNA甲基化调控的研究进展
|
Abstract:
多囊卵巢综合征(polycystic ovary syndrome, PCOS)是育龄妇女中最常见的内分泌疾病。尽管它的发生率很高,也被认为是无排卵性不孕症的主要原因,但人们对这种综合征知之甚少,并且仍然未得到充分诊断与治疗,致使女性患者的治疗方案研究进展缓慢。这种复杂疾病的异质性是遗传、环境、内分泌和行为因素共同发生的结果。通常与卵巢增大和功能失调、雄激素水平过高、胰岛素抵抗等有关。目前来说,没有单一的病因学因素可以完全解释PCOS的发病机制,大多证据表明PCOS是一种复杂的多因素疾病,且具有高度的遗传性。而表观遗传是指基因组和基因表达的可遗传改变,但DNA序列没有发生任何变化,表观遗传包括DNA甲基化、组蛋白修饰(乙酰化、磷酸化、甲基化等)和非编码RNA (ncRNA)含量的变化。现有研究表明表观遗传学,尤其是DNA甲基化,在PCOS的发病机制中起关键作用。
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of childbearing age. Despite its high incidence and being considered the main cause of anovulatory infertility, the syndrome is still poorly understood and remains underdiagnosed and undertreated, leading to slow progress in the research of treatment options for female patients. The heterogeneity of this complex disease is the result of a combination of genetic, environmental, endocrine, and behavioral factors. It is commonly associated with enlarged and dysfunctional ovaries, elevated levels of androgens, and insulin resistance. At present, there is no single etiological factor that can fully explain the pathogenesis of PCOS. Most evidence suggests that PCOS is a complex multifactorial disease with a high degree of heritability. Epigenetics refers to heritable changes in genome and gene expression without any alterations in DNA sequence. Epigenetics includes changes in DNA methylation, histone modifications (acetylation, phosphorylation, methylation, etc.), and non coding RNA (ncRNA) content. Existing research suggests that epigenetics, particularly DNA methylation, plays a crucial role in the pathogenesis of PCOS.
[1] | Szukiewicz, D., Trojanowski, S., Kociszewska, A. and Szewczyk, G. (2022) Modulation of the Inflammatory Response in Polycystic Ovary Syndrome (PCOS)—Searching for Epigenetic Factors. International Journal of Molecular Sciences, 23, Article 14663. https://doi.org/10.3390/ijms232314663 |
[2] | Sadeghi, H.M., Adeli, I., Calina, D., Docea, A.O., Mousavi, T., Daniali, M., et al. (2022) Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. International Journal of Molecular Sciences, 23, Article 583. https://doi.org/10.3390/ijms23020583 |
[3] | Pan, J., Tan, Y., Wang, F., Hou, N., Xiang, Y., Zhang, J., et al. (2018) Aberrant Expression and DNA Methylation of Lipid Metabolism Genes in PCOS: A New Insight into Its Pathogenesis. Clinical Epigenetics, 10, Article No. 6. https://doi.org/10.1186/s13148-018-0442-y |
[4] | Vatier, C. and Christin-Maitre, S. (2024) Epigenetic/Circadian Clocks and PCOS. Human Reproduction, 39, 1167-1175. https://doi.org/10.1093/humrep/deae066 |
[5] | Geng, X., Zhao, J., Huang, J., Li, S., Chu, W., Wang, W., et al. (2021) Lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 Downregulation-Mediated CDKN1A Promoter Hypomethylation. Molecular Therapy, 29, 1279-1293. https://doi.org/10.1016/j.ymthe.2020.11.018 |
[6] | Wang, K. and Li, Y. (2023) Signaling Pathways and Targeted Therapeutic Strategies for Polycystic Ovary Syndrome. Frontiers in Endocrinology, 14, Article 1191759. https://doi.org/10.3389/fendo.2023.1191759 |
[7] | Dapas, M., Lin, F.T.J., Nadkarni, G.N., Sisk, R., Legro, R.S., Urbanek, M., et al. (2020) Distinct Subtypes of Polycystic Ovary Syndrome with Novel Genetic Associations: An Unsupervised, Phenotypic Clustering Analysis. PLOS Medicine, 17, e1003132. https://doi.org/10.1371/journal.pmed.1003132 |
[8] | Fahs, D., Salloum, D., Nasrallah, M. and Ghazeeri, G. (2023) Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis. Diagnostics, 13, Article 1559. https://doi.org/10.3390/diagnostics13091559 |
[9] | Dewailly, D., Barbotin, A., Dumont, A., Catteau-Jonard, S. and Robin, G. (2020) Role of Anti-Müllerian Hormone in the Pathogenesis of Polycystic Ovary Syndrome. Frontiers in Endocrinology, 11, Article 641. https://doi.org/10.3389/fendo.2020.00641 |
[10] | Tata, B., Mimouni, N.E.H., Barbotin, A., Malone, S.A., Loyens, A., Pigny, P., et al. (2018) Elevated Prenatal Anti-Müllerian Hormone Reprograms the Fetus and Induces Polycystic Ovary Syndrome in Adulthood. Nature Medicine, 24, 834-846. https://doi.org/10.1038/s41591-018-0035-5 |
[11] | Risal, S., Pei, Y., Lu, H., Manti, M., Fornes, R., Pui, H., et al. (2019) Prenatal Androgen Exposure and Transgenerational Susceptibility to Polycystic Ovary Syndrome. Nature Medicine, 25, 1894-1904. https://doi.org/10.1038/s41591-019-0666-1 |
[12] | Mimouni, N.E.H., Paiva, I., Barbotin, A., Timzoura, F.E., Plassard, D., Le Gras, S., et al. (2021) Polycystic Ovary Syndrome Is Transmitted via a Transgenerational Epigenetic Process. Cell Metabolism, 33, 513-530.e8. https://doi.org/10.1016/j.cmet.2021.01.004 |
[13] | Dupont, J. and Scaramuzzi, R.J. (2016) Insulin Signalling and Glucose Transport in the Ovary and Ovarian Function during the Ovarian Cycle. Biochemical Journal, 473, 1483-1501. https://doi.org/10.1042/bcj20160124 |
[14] | Rudnicka, E., Suchta, K., Grymowicz, M., Calik-Ksepka, A., Smolarczyk, K., Duszewska, A.M., et al. (2021) Chronic Low Grade Inflammation in Pathogenesis of PCOS. International Journal of Molecular Sciences, 22, Article 3789. https://doi.org/10.3390/ijms22073789 |
[15] | Aboeldalyl, S., James, C., Seyam, E., Ibrahim, E.M., Shawki, H.E. and Amer, S. (2021) The Role of Chronic Inflammation in Polycystic Ovarian Syndrome—A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 22, Article 2734. https://doi.org/10.3390/ijms22052734 |
[16] | Kelly, C.C.J., Lyall, H., Petrie, J.R., Gould, G.W., Connell, J.M.C. and Sattar, N. (2001) Low Grade Chronic Inflammation in Women with Polycystic Ovarian Syndrome. The Journal of Clinical Endocrinology & Metabolism, 86, 2453-2455. https://doi.org/10.1210/jcem.86.6.7580 |
[17] | Rudnicka, E., Kunicki, M., Suchta, K., Machura, P., Grymowicz, M. and Smolarczyk, R. (2020) Inflammatory Markers in Women with Polycystic Ovary Syndrome. BioMed Research International, 2020, Article 4092470. https://doi.org/10.1155/2020/4092470 |
[18] | Garg, D. and Merhi, Z. (2016) Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS. Reproductive Biology and Endocrinology, 14, Article No. 71. https://doi.org/10.1186/s12958-016-0205-6 |
[19] | Diamanti‐Kandarakis, E., Piperi, C., Kalofoutis, A. and Creatsas, G. (2004) Increased Levels of Serum Advanced Glycation End‐Products in Women with Polycystic Ovary Syndrome. Clinical Endocrinology, 62, 37-43. https://doi.org/10.1111/j.1365-2265.2004.02170.x |
[20] | Zhang, B., Qi, X., Zhao, Y., Li, R., Zhang, C., Chang, H., et al. (2018) Elevated CD14++CD16+ Monocytes in Hyperhomocysteinemia-Associated Insulin Resistance in Polycystic Ovary Syndrome. Reproductive Sciences, 25, 1629-1636. https://doi.org/10.1177/1933719118756772 |
[21] | Hiam, D., Simar, D., Laker, R., Altıntaş, A., Gibson-Helm, M., Fletcher, E., et al. (2019) Epigenetic Reprogramming of Immune Cells in Women with PCOS Impact Genes Controlling Reproductive Function. The Journal of Clinical Endocrinology & Metabolism, 104, 6155-6170. https://doi.org/10.1210/jc.2019-01015 |
[22] | 高慧慧, 钱贝冉, 倪艳, 等. 多囊卵巢综合征发病机制研究进展[J]. 四川大学学报(医学版), 2024, 55(4): 1049-1054. |
[23] | Wang, D., Weng, Y., Zhang, Y., Wang, R., Wang, T., Zhou, J., et al. (2020) Exposure to Hyperandrogen Drives Ovarian Dysfunction and Fibrosis by Activating the NLRP3 Inflammasome in Mice. Science of The Total Environment, 745, Article 141049. https://doi.org/10.1016/j.scitotenv.2020.141049 |
[24] | 梁梦梦, 赵燕, 张艳新, 等. 高雄激素诱导多囊卵巢综合征表观遗传机制的研究进展[J]. 中国病理生理杂志, 2024, 40(1): 164-171. |
[25] | Li, M., Chi, X., Wang, Y., Setrerrahmane, S., Xie, W. and Xu, H. (2022) Trends in Insulin Resistance: Insights into Mechanisms and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 7, Article No. 216. https://doi.org/10.1038/s41392-022-01073-0 |
[26] | Bril, F., Ezeh, U., Amiri, M., Hatoum, S., Pace, L., Chen, Y., et al. (2023) Adipose Tissue Dysfunction in Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism, 109, 10-24. https://doi.org/10.1210/clinem/dgad356 |
[27] | Shen, H., Qiu, L., Zhang, Z., Qin, Y., Cao, C. and Di, W. (2013) Genome-Wide Methylated DNA Immunoprecipitation Analysis of Patients with Polycystic Ovary Syndrome. PLOS ONE, 8, e64801. https://doi.org/10.1371/journal.pone.0064801 |
[28] | Ting, W., Yanyan, Q., Jian, H., Keqin, H. and Duan, M. (2013) The Relationship between Insulin Resistance and CpG Island Methylation of LMNA Gene in Polycystic Ovary Syndrome. Cell Biochemistry and Biophysics, 67, 1041-1047. https://doi.org/10.1007/s12013-013-9602-z |
[29] | Ilie, I.R. and Georgescu, C.E. (2015) Polycystic Ovary Syndrome-Epigenetic Mechanisms and Aberrant MicroRNA. Advances in Clinical Chemistry, 71, 25-45. https://doi.org/10.1016/bs.acc.2015.06.001 |
[30] | Zhao, H., Zhang, J., Cheng, X., Nie, X. and He, B. (2023) Insulin Resistance in Polycystic Ovary Syndrome across Various Tissues: An Updated Review of Pathogenesis, Evaluation, and Treatment. Journal of Ovarian Research, 16, Article No. 9. https://doi.org/10.1186/s13048-022-01091-0 |
[31] | Cao, J., Huo, P., Cui, K., Wei, H., Cao, J., Wang, J., et al. (2022) Follicular Fluid-Derived Exosomal miR-143-3p/miR-155-5p Regulate Follicular Dysplasia by Modulating Glycolysis in Granulosa Cells in Polycystic Ovary Syndrome. Cell Communication and Signaling, 20, Article No. 61. https://doi.org/10.1186/s12964-022-00876-6 |
[32] | Long, W., Zhao, C., Ji, C., Ding, H., Cui, Y., Guo, X., et al. (2014) Characterization of Serum MicroRNAs Profile of PCOS and Identification of Novel Non-Invasive Biomarkers. Cellular Physiology and Biochemistry, 33, 1304-1315. https://doi.org/10.1159/000358698 |
[33] | Kopp, F. and Mendell, J.T. (2018) Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell, 172, 393-407. https://doi.org/10.1016/j.cell.2018.01.011 |
[34] | Zhao, J., Huang, J., Geng, X., Chu, W., Li, S., Chen, Z., et al. (2019) Polycystic Ovary Syndrome: Novel and Hub LncRNAs in the Insulin Resistance-Associated LncRNA-mRNA Network. Frontiers in Genetics, 10, Article 772. https://doi.org/10.3389/fgene.2019.00772 |
[35] | Huang, X., Hao, C., Bao, H., Wang, M. and Dai, H. (2015) Aberrant Expression of Long Noncoding RNAs in Cumulus Cells Isolated from PCOS Patients. Journal of Assisted Reproduction and Genetics, 33, 111-121. https://doi.org/10.1007/s10815-015-0630-z |
[36] | Shukla, P. and Melkani, G.C. (2023) Mitochondrial Epigenetic Modifications and Nuclear-Mitochondrial Communication: A New Dimension towards Understanding and Attenuating the Pathogenesis in Women with PCOS. Reviews in Endocrine and Metabolic Disorders, 24, 317-326. https://doi.org/10.1007/s11154-023-09789-2 |
[37] | Shock, L.S., Thakkar, P.V., Peterson, E.J., Moran, R.G. and Taylor, S.M. (2011) DNA Methyltransferase 1, Cytosine Methylation, and Cytosine Hydroxymethylation in Mammalian Mitochondria. Proceedings of the National Academy of Sciences, 108, 3630-3635. https://doi.org/10.1073/pnas.1012311108 |
[38] | Sharma, N., Pasala, M.S. and Prakash, A. (2019) Mitochondrial DNA: Epigenetics and Environment. Environmental and Molecular Mutagenesis, 60, 668-682. https://doi.org/10.1002/em.22319 |
[39] | Patil, V., Cuenin, C., Chung, F., Aguilera, J.R.R., Fernandez-Jimenez, N., Romero-Garmendia, I., et al. (2019) Human Mitochondrial DNA Is Extensively Methylated in a Non-CpG Context. Nucleic Acids Research, 47, 10072-10085. https://doi.org/10.1093/nar/gkz762 |
[40] | Jia, L., Li, J., He, B., Jia, Y., Niu, Y., Wang, C., et al. (2016) Abnormally Activated One-Carbon Metabolic Pathway Is Associated with mtDNA Hypermethylation and Mitochondrial Malfunction in the Oocytes of Polycystic Gilt Ovaries. Scientific Reports, 6, Article No. 19436. https://doi.org/10.1038/srep19436 |
[41] | Divoux, A., Erdos, E., Whytock, K., Osborne, T.F. and Smith, S.R. (2022) Transcriptional and DNA Methylation Signatures of Subcutaneous Adipose Tissue and Adipose-Derived Stem Cells in PCOS Women. Cells, 11, Article 848. https://doi.org/10.3390/cells11050848 |
[42] | Abbott, D.H. and Dumesic, D.A. (2021) Passing on PCOS: New Insights into Its Epigenetic Transmission. Cell Metabolism, 33, 463-466. https://doi.org/10.1016/j.cmet.2021.02.008 |
[43] | Nakanishi, N., Osuka, S., Kono, T., Kobayashi, H., Ikeda, S., Bayasula, B., et al. (2022) Upregulated Ribosomal Pathway Impairs Follicle Development in a Polycystic Ovary Syndrome Mouse Model: Differential Gene Expression Analysis of Oocytes. Reproductive Sciences, 30, 1306-1315. https://doi.org/10.1007/s43032-022-01095-7 |
[44] | Mimouni, N.E.H., Paiva, I., Barbotin, A., Timzoura, F.E., Plassard, D., Le Gras, S., et al. (2021) Polycystic Ovary Syndrome Is Transmitted via a Transgenerational Epigenetic Process. Cell Metabolism, 33, 513-530.e8. https://doi.org/10.1016/j.cmet.2021.01.004 |
[45] | Cao, P., Yang, W., Wang, P., Li, X. and Nashun, B. (2021) Characterization of DNA Methylation and Screening of Epigenetic Markers in Polycystic Ovary Syndrome. Frontiers in Cell and Developmental Biology, 9, Article 664843. https://doi.org/10.3389/fcell.2021.664843 |
[46] | Eini, F., Novin, M.G., Joharchi, K., Hosseini, A., Nazarian, H., Piryaei, A., et al. (2017) Intracytoplasmic Oxidative Stress Reverses Epigenetic Modifications in Polycystic Ovary Syndrome. Reproduction, Fertility and Development, 29, 2313-2323. https://doi.org/10.1071/rd16428 |
[47] | Wang, S., Wang, M., Ichino, L., Boone, B.A., Zhong, Z., Papareddy, R.K., et al. (2024) MBD2 Couples DNA Methylation to Transposable Element Silencing during Male Gametogenesis. Nature Plants, 10, 13-24. https://doi.org/10.1038/s41477-023-01599-3 |
[48] | Kolkman, R.W., Michel-Souzy, S., Wasserberg, D., Segerink, L.I. and Huskens, J. (2022) Density Control over MBD2 Receptor-Coated Surfaces Provides Superselective Binding of Hypermethylated DNA. ACS Applied Materials & Interfaces, 14, 40579-40589. https://doi.org/10.1021/acsami.2c09641 |
[49] | Schmolka, N., Karemaker, I.D., Cardoso da Silva, R., Recchia, D.C., Spegg, V., Bhaskaran, J., et al. (2023) Dissecting the Roles of MBD2 Isoforms and Domains in Regulating Nurd Complex Function during Cellular Differentiation. Nature Communications, 14, Article No. 3848. https://doi.org/10.1038/s41467-023-39551-w |