全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ho0.3Tb0.3Dy0.4Fe1.93化合物的结构、磁性和磁致伸缩
Structure, Magnetism and Magnetostriction of Ho0.3Tb0.3Dy0.4Fe1.93 Compound

DOI: 10.12677/app.2025.151007, PP. 64-70

Keywords: Laves相,易磁化方向,磁致伸缩
Laves Phase
, Easy Magnetic Direction, Magnetostriction

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用真空电弧熔炼法制备了Ho0.3Tb0.3Dy0.4Fe1.93Laves相化合物,研究了其结构、磁性和磁致伸缩性能。X射线衍射实验和能谱分析结果表明,Ho0.3Tb0.3Dy0.4Fe1.93化合物呈现单一的Laves相。根据初始交流磁化率曲线确定Ho0.3Tb0.3Dy0.4Fe1.93化合物有两个自旋重取向温度TSR1和TSR2,分别对应易磁化方向从<111>到<100>和从<100>到<110>的转变。差示扫描量热法测量出Ho0.3Tb0.3Dy0.4Fe1.93化合物居里温度为643 K。在室温下,Ho0.3Tb0.3Dy0.4Fe1.93化合物在3 kOe和10 kOe磁场下,磁致伸缩(λ||-λ)分别为810 ppm和1332 ppm。变温磁致伸缩研究表明,在3 kOe和10 kOe磁场下,磁致伸缩λ3k ≥ 500 ppm和λ10k ≥ 1000 ppm的温度跨度分别为155 K和280 K。这表明Ho0.3Tb0.3Dy0.4Fe1.9化合物具有宽温域磁致伸缩性能。
In this paper, Ho0.3Tb0.3Dy0.4Fe1.93 Laves phase compounds were prepared by vacuum arc melting method, and their structural, magnetic, and magnetostrictive properties were investigated. The results of X-ray diffraction experiments and energy spectroscopic analyses showed that the Ho0.3Tb0.3Dy0.4Fe1.93 compounds exhibit a single Laves phase. The Ho0.3Tb0.3Dy0.4Fe1.93 compound was determined to have two spin reorientation temperatures, TSR1 and TSR2, based on the Initial AC magnetic susceptibility, which corresponds to transitions from <111> to <100> and from <100> to <110> in the easy magnetic directionin, respectively. Differential scanning calorimetry measured the Curie temperature of the Ho0.3Tb0.3Dy0.4Fe1.93 compound to be 643 K. At room temperature, the magnetostriction (λ||-λ) of the Ho0.3Tb0.3Dy0.4Fe1.93 compounds is 810 ppm and 1332 ppm for magnetic fields of 3 kOe and 10 kOe, respectively. Variable-temperature magnetostriction studies have shown that, for magnetic fields of 3 kOe and 10 kOe, the magnetostriction λ3k ≥ 500 ppm and λ15k ≥ 1000 ppm for temperature spans of 155 K and 280 K, respectively. This suggests that the Ho0.3Tb0.3Dy0.4Fe1.93 compounds have wide temperature domain

References

[1]  Clarka, A.E. (1980) Ferromagnetic Materials. North-Holland Publishing Company.
[2]  Liu, J., Jiang, C. and Xu, H. (2012) Giant Magnetostrictive Materials. Science China Technological Sciences, 55, 1319-1326.
https://doi.org/10.1007/s11431-012-4810-0
[3]  张洪平, 杜挺, 王龙妹, 等. 稀土——铁系超磁致伸缩材料水声换能器的研制[J]. 金属功能材料, 1995(3): 107-109.
[4]  Jiang, C., Zhang, H., Wang, Z. and Xu, H. (2008) Magnetostriction and Hysteresis of ⟨1 1 0⟩ Oriented Tb0.29Dy0.48Ho0.23Fe2 single Crystal. Journal of Physics D: Applied Physics, 41, Article ID: 155012.
https://doi.org/10.1088/0022-3727/41/15/155012
[5]  Wang, B., Lv, Y., Li, G., Huang, W., Weng, L. and Cui, B. (2015) The Structure, Magnetostriction, and Hysteresis of (Tb0.3Dy0.7Fe1.9)1−x(Tb0.15Ho0.85Fe1.9)x Alloys. Journal of Applied Physics, 117, 17A912.
https://doi.org/10.1063/1.4916505
[6]  Bartashevich, A.M., Gerasimov, E.G., Mushnikov, N.V., Inishev, A.A., Terentev, P.B., Gaviko, V.S., et al. (2022) Structural and Magnetoelastic Properties of Non-Stoichiometric Tbfe2mn Laves Phase. Journal of Alloys and Compounds, 923, Article ID: 166360.
https://doi.org/10.1016/j.jallcom.2022.166360
[7]  Politova, G., Mikhailova, A., Morozov, D., Politov, M., Ganin, M. and Filimonov, A. (2023) Magnetic and Magnetostrictive Properties of (Tb, Nd)Fe2 Alloys. 2023 International Conference on Electrical Engineering and Photonics (EExPolytech), St Petersburg, 19-20 October 2023, 308-311.
https://doi.org/10.1109/eexpolytech58658.2023.10318747
[8]  Kang, D., Liu, J., Jiang, C. and Xu, H. (2015) Control of Solid-Liquid Interface Morphology and Radial Composition Distribution: TbDyFe Single Crystal Growth. Journal of Alloys and Compounds, 621, 331-338.
https://doi.org/10.1016/j.jallcom.2014.09.106
[9]  Shi, Y.G., Tang, S.L., Huang, Y.J., Lv, L.Y. and Du, Y.W. (2007) Anisotropy Compensation and Magnetostriction in TbxNd1-xFe1.9 Cubic Laves Alloys. Applied Physics Letters, 90, Article ID: 142515.
https://doi.org/10.1063/1.2721128
[10]  Ren, W.J., Liu, J.J., Li, D., Liu, W., Zhao, X.G. and Zhang, Z.D. (2006) Direct Experimental Evidence for Anisotropy Compensation between Dy3+ and Pr3+ Ions. Applied Physics Letters, 89, Article ID: 122506.
https://doi.org/10.1063/1.2356109
[11]  Wun-Fogle, M., Restorff, J.B., Clark, A.E. and Lindberg, J.F. (1998) Magnetization and Magnetostriction of Dendritic [112] TbxDyyHozFe1.95 (x + y + z = 1) Rods under Compressive Stress. Journal of Applied Physics, 83, 7279-7281.
https://doi.org/10.1063/1.367700
[12]  张洪波, 蒋成保, 徐惠彬. ⟨1 1 0⟩取向(TbDyHo)Fe2合金磁致伸缩的窄滞后特性[J]. 金属学报, 2007(11): 1217-1220.
[13]  Ding, H., Shi, Y. and Tang, S. (2024) Large Magnetostriction of Nd0.2Tb0.3Dy0.5Fe1.93/Epoxy Composites in a Wide Temperature Range. Journal of Rare Earths, 42, 705-709.
https://doi.org/10.1016/j.jre.2023.02.007
[14]  Shi, Y.G., Ding, H.H., Xia, C.R., Ke, X.Q. and Tang, S.L. (2022) Large Magnetostriction over a Wide Temperature Range in a Nd0.2TbxDy0.8−xFe1.93 Laves Compound. Applied Physics Letters, 121, Article ID: 212401.
https://doi.org/10.1063/5.0120137
[15]  Wang, B., Cao, S., Huang, W., Sun, Y., Weng, L. and Zhao, Z. (2016) Phase Relationship and Magnetostriction of Tb-Dy-Ho-Fe Alloys. IEEE Transactions on Applied Superconductivity, 26, 1-4.
https://doi.org/10.1109/tasc.2016.2515091
[16]  Zhang, H., Pang, Y., Wen, L. and Jiang, C. (2010) Magnetostriction and Hysteresis of <110> Oriented TbDyHoFe1.95 Alloy. Journal of Rare Earths, 28, 403-405.
https://doi.org/10.1016/s1002-0721(10)60332-8
[17]  Wun-Fogle, M., Restorff, J.B. and Clark, A.E. (1999) Hysteresis and Magnetostriction of TbxDyyHo1−x−yFe1.95 [112] Dendritic Rods. Journal of Applied Physics, 85, 6253-6255.
https://doi.org/10.1063/1.370127
[18]  Wang, B., Lv, Y., Li, G., Huang, W., Sun, Y. and Cui, B. (2014) The Magnetostriction and Its Ratio to Hysteresis for Tb-Dy-Ho-Fe Alloys. Journal of Applied Physics, 115, 17A902
https://doi.org/10.1063/1.4852095
[19]  Funayama, T., Kobayashi, T., Sakai, I. and Sahashi, M. (1992) Mn Substitution Effect on Magnetostriction Temperature Dependence in Tb0.3Dy0.7Fe2. Applied Physics Letters, 61, 114-115.
https://doi.org/10.1063/1.107657
[20]  Zhang, H., Jiang, C., Zhang, T. and Xu, H. (2007) Magnetostriction and Hysteresis of (Tb0.36Dy0.64)1-XHoXFe1.95 Alloys. SPIE Proceedings, 6423, 1-7.
https://doi.org/10.1117/12.779603
[21]  Gao, Z.Q., Guo, W.X., Wang, Z.Y. and Shi, Y.G. (2025) Structure and Magnetostriction in Nd0.25Tb0.3Dy0.45 (Fe0.9B0.1)1.93 Compound. Journal of Alloys and Compounds, 1010, Article ID: 177018.
https://doi.org/10.1016/j.jallcom.2024.177018
[22]  Toby, B.H. and Von Dreele, R.B. (2013) GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. Journal of Applied Crystallography, 46, 544-549.
https://doi.org/10.1107/s0021889813003531
[23]  Huang, D., Gao, J., Lapidus, S.H., Brown, D.E. and Ren, Y. (2019) Exotic Hysteresis of Ferrimagnetic Transition in Laves Compound TbCo2. Materials Research Letters, 8, 97-102.
https://doi.org/10.1080/21663831.2019.1704454
[24]  Dwight, A.E. and Kimball, C.W. (1974) TbFe2, a Rhombohedral Laves Phase. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30, 2791-2793.
https://doi.org/10.1107/s0567740874008156

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133