|
基于时变可靠度理论的桥梁状态评估
|
Abstract:
为对某连续刚构桥进行状态评估,结合时变可靠度研究方法,考虑混凝土强度时变效应和预应力筋强度时变效应等因素,建立其时变可靠度模型,通过有限元软件进行模拟分析,采用不确定分析手段,对桥梁的相关统计参数进行抽样,对其连续刚构段进行计算,计算考虑时变因素下的桥梁失效概率并研究时变效应对评估桥梁失效概率的影响,得到设计使用年限内服役时间与可靠度指标之间的关系,对桥梁状态进行评估。研究表明,基于可靠度方法对现役桥梁状态进行评估时,考虑混凝土强度时变效应和预应力筋强度的时变效应计算得到的失效概率曲线斜率均大于不考虑时变效应时的曲线斜率,对桥梁状态预测的结果更为安全。
For the state assessment of a certain continuous rigid-frame bridge, combined with the time-varying reliability research method, factors such as the time-varying effect of concrete strength and the time-varying effect of prestressed tendon strength are considered to establish its time-varying reliability model. Simulation analysis is conducted through finite-element software. Uncertainty analysis methods are used to sample the relevant statistical parameters of the bridge, and calculations are made for its continuous rigid-frame section to calculate the bridge failure probability considering time-varying factors and to study the impact of time-varying effects on the bridge failure probability. The relationship between the service time within the design service life and the reliability index is obtained to evaluate the bridge state. Research shows that when evaluating the state of existing bridges based on the reliability method, the slopes of the failure probability curves calculated by considering the time-varying effects of concrete strength and prestressed tendon strength are both greater than those of the curves without considering the time-varying effects, and the results of bridge state prediction are more reliable.
[1] | 罗育明, 彭建新, 张建仁. 在役钢筋混凝土T型梁桥增大截面加固后可靠度研究[J]. 建筑结构, 2018, 48(S1): 611-616. |
[2] | 刘健, 晏铖, 方其样, 等. 基于响应面法与JC法结合的大跨度桥梁可靠度分析[J]. 桥梁建设, 2022, 52(4): 32-38. |
[3] | 李文杰, 侯天宇, 赵君黎, 等. 基于可靠度理论的混凝土桥梁安全性评估方法研究[J]. 公路交通科技, 2017, 34(4): 87-92. |
[4] | Bian, X., Chen, X., Yang, H. and You, C. (2019) Improved Nonprobabilistic Global Optimal Solution Method and Its Application in Bridge Reliability Assessment. Advances in Civil Engineering, 8, Article ID: 8290317. https://doi.org/10.1155/2019/8290317 |
[5] | Lu, N., Liu, Y., Noori, M. and Xiao, X. (2020) System Reliability Assessment of Cable-Supported Bridges under Stochastic Traffic Loads Based on Deep Belief Networks. Applied Sciences, 10, Article 8049. https://doi.org/10.3390/app10228049 |
[6] | 程健, 黎恩华. 基于粒子群算法的桥梁多目标维护决策优化[J]. 工程与建设, 2020, 34(4): 767-769. |
[7] | 中华人民共和国建设部. GB/T 50283-1999公路工程结构可靠度设计统一标准[S]. 北京: 中华人民共和国建设部, 1999. |
[8] | 张建仁, 刘扬. 混凝土桥梁构件服役期的抗力概率模型[J]. 长沙理工大学学报(自然科学版), 2004, 1(1): 27-33. |
[9] | 徐善华, 牛荻涛, 王庆霖. 钢筋混凝土结构碳化耐久性分析[J]. 建筑技术开发, 2002, 29(8): 8-10. |
[10] | 彭建新, 邵旭东, 张建仁. 考虑气候变化的受碳化腐蚀先张预应力混凝土梁时变可靠性评估[J]. 长沙理工大学学报(自然科学版), 2010, 7(2): 33-42. |
[11] | 张建仁, 马亚飞, 王磊. 模型及参数不确定下钢筋锈蚀率动态演进分析[J]. 中南大学学报(自然科学版), 2014, 45(2): 542-549. |
[12] | 张建仁, 龚文俊, 刘扬. 混凝土连续梁桥使用期的时变体系可靠度计算[J]. 长沙理工大学学报(自然科学版), 2006, 3(3): 54-60. |
[13] | 张运涛, 孟少平. 基于响应面法的大跨连续刚构桥长期变形预测[J]. 土木工程学报, 2011, 44(8): 102-106. |