|
岩石与地热井水泥表面湿度对热传导效率的影响
|
Abstract:
岩石与地热井水泥表面之间的热传导效率对地热能的热传导性能起着至关重要的作用。在施工过程中,表面处始终存在一层水膜,虽然由于其尺度较小而常常被忽视,但它对表面的热传导效率有着显著影响。因此,本文从原子尺度深入探讨了水分对岩石与地热井水泥表面热传导效率的影响。我们讨论了不同厚度水膜影响下的热传导效率,并从表面官能团的角度进一步分析了这种效率。氢键的引入揭示了表面热传导减弱的原因。本研究旨在揭示地热井热传导效率低下的内在原因,并为施工过程中的控制指标提供指导,从而为实现高效的热传导奠定理论基础。
The heat transfer efficiency at the interface between rock masses and geothermal well cement plays a crucial role in determining the heat transfer properties of geothermal energy. During construction, a water film invariably exists at this interface, often overlooked due to its small scale, yet it significantly impacts the interface’s thermal transfer efficiency. Thus, this paper delves into the influence of moisture on the interface between rock masses and geothermal well cement at the atomic scale. We discuss the thermal transfer efficiency under the influence of water films of varying thicknesses and further analyze this efficiency from the perspective of interface functional groups. The introduction of hydrogen bonding sheds light on the reasons behind the weakened interface thermal transfer. This study aims to unveil the underlying reasons for the low thermal transfer efficiency of geothermal wells, and to provide guidance for controlling indicators during the construction process, thereby establishing a theoretical foundation for achieving efficient geothermal conduction.
[1] | Lin, W.J., Liu, Z.M., Wang, W.L. and Wang, G.L. (2013) The Assessment of Geothermal Resources Potential of China. Geology in China, 40, 312-321. |
[2] | Scott, S., Driesner, T. and Weis, P. (2015) Geologic Controls on Supercritical Geothermal Resources above Magmatic Intrusions. Nature Communications, 6, Article No. 7837. https://doi.org/10.1038/ncomms8837 |
[3] | Yang, Y., Li, B., Che, L., Li, M., Luo, Y. and Han, H. (2024) Calculation Model and Influence Factors of Thermal Conductivity of Composite Cement-Based Materials for Geothermal Well. Geothermal Energy, 12, Article No. 3. https://doi.org/10.1186/s40517-024-00282-w |
[4] | Won, J., Lee, D., Na, K., Lee, I. and Choi, H. (2015) Physical Properties of G-Class Cement for Geothermal Well Cementing in South Korea. Renewable Energy, 80, 123-131. https://doi.org/10.1016/j.renene.2015.01.067 |
[5] | Hasan, A.R. and Kabir, C.S. (2010) Modeling Two-Phase Fluid and Heat Flows in Geothermal Wells. Journal of Petroleum Science and Engineering, 71, 77-86. https://doi.org/10.1016/j.petrol.2010.01.008 |
[6] | Gould, T.L. (1974) Vertical Two-Phase Steam-Water Flow in Geothermal Wells. Journal of Petroleum Technology, 26, 833-842. https://doi.org/10.2118/4961-pa |
[7] | Yehia, T., Gasser, M., Ebaid, H., Meehan, N. and Okoroafor, E.R. (2024) Comparative Analysis of Machine Learning Techniques for Predicting Drilling Rate of Penetration (ROP) in Geothermal Wells: A Case Study of FORGE Site. Geothermics, 121, Article 103028. https://doi.org/10.1016/j.geothermics.2024.103028 |
[8] | Raymond, J., Langevin, H., Comeau, F. and Malo, M. (2022) Temperature Dependence of Rock Salt Thermal Conductivity: Implications for Geothermal Exploration. Renewable Energy, 184, 26-35. https://doi.org/10.1016/j.renene.2021.11.080 |
[9] | Raymond, J., Therrien, R., Gosselin, L. and Lefebvre, R. (2011) Numerical Analysis of Thermal Response Tests with a Groundwater Flow and Heat Transfer Model. Renewable Energy, 36, 315-324. https://doi.org/10.1016/j.renene.2010.06.044 |
[10] | Murphy, H.D. and Lawton, R.G. (1977) Downhole Measurements of Thermal Conductivity in Geothermal Reservoirs. Journal of Pressure Vessel Technology, 99, 607-611. https://doi.org/10.1115/1.3454580 |
[11] | Kim, K., Jeon, S., Kim, J. and Yang, S. (2003) An Experimental Study on Thermal Conductivity of Concrete. Cement and Concrete Research, 33, 363-371. https://doi.org/10.1016/s0008-8846(02)00965-1 |
[12] | Schiller, P., Wahab, M., Bier, T. and Mögel, H.-J. (2022) A Model for Elucidating the Contributions of Meso-and Macropores to Water Sorption and Strain in Cementitious Materials. Cement and Concrete Research, 151, Article 106589. https://doi.org/10.1016/j.cemconres.2021.106589 |
[13] | Zhang, K., Yuan, Q., Zuo, S., Huang, T. and Wang, Y. (2023) Pullout Behavior of Steel Fiber Embedded into Cement Matrix under Low Humidity Curing. Cement and Concrete Research, 172, Article 107217. https://doi.org/10.1016/j.cemconres.2023.107217 |
[14] | Zhang, Z. and Angst, U. (2022) Microstructure and Moisture Transport in Carbonated Cement-Based Materials Incorporating Cellulose Nanofibrils. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4040765 |
[15] | Bentz, D.P., Garboczi, E.J., Haecker, C.J. and Jensen, O.M. (1999) Effects of Cement Particle Size Distribution on Performance Properties of Portland Cement-Based Materials. Cement and Concrete Research, 29, 1663-1671. https://doi.org/10.1016/s0008-8846(99)00163-5 |
[16] | Görgülü, K., Durutürk, Y.S., Demirci, A. and Poyraz, B. (2008) Influences of Uniaxial Stress and Moisture Content on the Thermal Conductivity of Rocks. International Journal of Rock Mechanics and Mining Sciences, 45, 1439-1445. https://doi.org/10.1016/j.ijrmms.2008.02.004 |
[17] | 孟卓, 赵党花, 王怡. 管道流体流动与传热效能多目标优化[J]. 化工机械, 2023, 50(6): 824-830+839. |
[18] | 张杰, 王贵洋, 尹文锋, 等. 地下渗流场对中深层水平井同轴套管取热性能的影响[J]. 断块油气田, 2024, 31(3): 526-532. |