|
考虑土–结构相互作用的输电塔抗震研究综述
|
Abstract:
输电塔作为电力系统中重要的基础设施,其抗震性能对电力系统的稳定性和安全性具有至关重要的作用。传统的输电塔抗震分析通常忽略了土–结构相互作用(Soil–Structure Interaction,简称SSI效应),这导致对地震响应的预测较为保守。随着研究的深入,越来越多的研究开始考虑这个因素,特别是在强震或复杂地质条件下,土体与结构之间的相互作用对结构的振动响应和稳定性有着显著影响。本文综述了考虑土–结构相互作用的输电塔抗震研究,分析了SSI效应对输电塔抗震性能的影响,并详细介绍了目前关于土–结构相互作用的研究方法、成果并展望了未来的研究方向。
Transmission towers, as significant infrastructure in the power system, play a vital role in the stability and security of the power system. The seismic performance of traditional transmission towers is usually analyzed while ignoring the Soil-Structure Interaction (referred to as the SSI effect), resulting in a relatively conservative prediction of seismic responses. With in-depth research, an increasing number of studies have begun to consider this factor. Particularly under strong earthquakes or complex geological conditions, the interaction between the soil and the structure has a remarkable impact on the vibration response and stability of the structure. This paper reviews the seismic research of transmission towers considering the soil-structure interaction, analyzes the influence of the SSI effect on the seismic performance of transmission towers, and elaborates on the current research methods, achievements regarding the soil-structure interaction, and looks forward to future research directions.
[1] | 李振宇, 黄格省. 推动我国能源生产革命的途径分析[J]. 化工进展, 2015, 34(10): 3521-3529. |
[2] | 李新民. 全球能源互联网重塑世界能源格局[J]. 青海科技, 2016, 23(2): 36-37. |
[3] | Lamb, H.I. (1904) On the Propagation of Tremors Over the Surface of an Elastic Solid. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 203, 1-42. |
[4] | Reissner, M.E. (1937) On the Theory of Beams Resting on a Yielding Foundation. Proceedings of the National Academy of Sciences, 23, 328-333. https://doi.org/10.1073/pnas.23.6.328 |
[5] | Parmelee, R.A. (1967) Building-Foundation Interaction Effects. Journal of the Engineering Mechanics Division, 93, 131-152. https://doi.org/10.1061/jmcea3.0000834 |
[6] | Raychowdhury, P. (2008) Nonlinear Winkler-Based Shallow Foundation Model for Performance Assessment of Seismically Loaded Structures. PhD Thesis, University of California. |
[7] | Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999) Seismic Soil-Pile-Structure Interaction Experiments and Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 125, 750-759. https://doi.org/10.1061/(asce)1090-0241(1999)125:9(750) |
[8] | Hassani, N., Bararnia, M. and Ghodrati Amiri, G. (2018) Effect of Soil-Structure Interaction on Inelastic Displacement Ratios of Degrading Structures. Soil Dynamics and Earthquake Engineering, 104, 75-87. https://doi.org/10.1016/j.soildyn.2017.10.004 |
[9] | Rahmani, A., Taiebat, M., Liam Finn, W.D. and Ventura, C.E. (2016) Evaluation of Substructuring Method for Seismic Soil-Structure Interaction Analysis of Bridges. Soil Dynamics and Earthquake Engineering, 90, 112-127. https://doi.org/10.1016/j.soildyn.2016.08.013 |
[10] | Jabini Asli, S., Saffari, H., Zahedi, M.J. and Saadatinezhad, M. (2019) Comparing the Performance of Substructure and Direct Methods to Estimate the Effect of SSI on Seismic Response of Mid-Rise Structures. International Journal of Geotechnical Engineering, 15, 81-94. https://doi.org/10.1080/19386362.2019.1597560 |
[11] | Idriss, I.M. and Sadigh, K. (1976) Seismic SSI of Nuclear Power Plant Structures. Journal of the Geotechnical Engineering Division, 102, 663-682. https://doi.org/10.1061/ajgeb6.0000292 |
[12] | Stevens, D.J. and Krauthammer, T. (1988) A Finite Difference/Finite Element Approach to Dynamic Soil-Structure Interaction Modelling. Computers & Structures, 29, 199-205. https://doi.org/10.1016/0045-7949(88)90253-2 |
[13] | Godbole, P.N., Viladkar, M.N. and Noorzaei, J. (1990) Nonlinear Soil-Structure Interaction Analysis Using Coupled Finite-Infinite Elements. Computers & Structures, 36, 1089-1096. https://doi.org/10.1016/0045-7949(90)90216-o |
[14] | Wolf, J.P. and Darbre, G.R. (1984) Dynamic‐Stiffness Matrix of Soil by the Boundary‐Element Method: Conceptual Aspects. Earthquake Engineering & Structural Dynamics, 12, 385-400. https://doi.org/10.1002/eqe.4290120307 |
[15] | Çelebi, E., Fırat, S. and Çankaya, İ. (2006) The Evaluation of Impedance Functions in the Analysis of Foundations Vibrations Using Boundary Element Method. Applied Mathematics and Computation, 173, 636-667. https://doi.org/10.1016/j.amc.2005.04.006 |
[16] | Wang, S. (1992) Coupled Boundary and Finite Elements for Dynamic Structure (3D)-Foundation-Soil Interaction. Computers & Structures, 44, 807-812. https://doi.org/10.1016/0045-7949(92)90465-c |
[17] | Wegner, J.L., Yao, M.M. and Zhang, X. (2005) Dynamic Wave-Soil-Structure Interaction Analysis in the Time Domain. Computers & Structures, 83, 2206-2214. https://doi.org/10.1016/j.compstruc.2005.04.004 |
[18] | 刘兴龙. 考虑SSI效应的特高压输电塔线体系风振响应研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2018. |
[19] | 汪之松, 刘兴龙, 武彦君, 等. 考虑SSI效应的输电塔-线体系风振响应简化分析[J]. 西南交通大学学报, 2019, 54(2): 319-327. |
[20] | 王磊, 李正良, 王涛. 考虑SSI效应的输电塔-线耦合系统抗震可靠度分析[J].湖南大学学报(自然科学版), 2023, 50(11): 192-203. |
[21] | 徐静. 考虑SSI的输电塔-线体系地震反应分析[D]: [硕士学位论文]. 大连: 大连理工大学, 2008. |
[22] | 魏文晖, 徐辅中, 袁超, 等. 考虑SSI效应输电塔线体系多维地震响应分析[J]. 武汉理工大学学报, 2020, 42(3): 39-45. |
[23] | 魏文晖, 徐佩, 周翔, 等. 考虑SSI的输电塔在地震摇摆分量下的响应研究[J]. 武汉理工大学学报, 2022, 44(8): 46-53. |
[24] | 袁超. 地震动摇摆分量和输电塔线体系的多维地震响应研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2020. |
[25] | 周翔. 水平-摇摆地震动作用下土-输电塔体系动力响应研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2021. |
[26] | 田利, 李兴建, 易思银, 等. 地震下考虑桩-土-结构相互作用的输电塔-线体系响应分析[J]. 世界地震工程, 2018, 34(3): 1-11. |
[27] | 刘凯悦. 考虑SSI的特高压输电塔-线体系地震易损性分析[D]: [硕士学位论文]. 济南: 山东大学, 2023. |
[28] | 李兴建. 考虑SSI的输电塔-线体系动力响应与倒塌分析[D]: [硕士学位论文]. 济南: 山东大学, 2018. |
[29] | 毛龙. 考虑桩-土-结构相互作用的输电塔抗震性能研究[D]: [硕士学位论文]. 吉林: 东北电力大学, 2017. |
[30] | 张琰, 王志勇, 邢月龙, 等. 基于输电塔-基础-地基动力相互作用的地震反应分析[C]//《工业建筑》2016年增刊Ⅱ. 北京: 工业建筑杂志社, 2016: 308-311. |