|
塔机风致响应分析及疲劳寿命研究进展
|
Abstract:
塔机广泛应用于建筑和工程领域,其安全性和可靠性对施工效率和人员安全至关重要。在复杂风环境下,风致响应和疲劳寿命是影响塔机性能的关键因素,通过风洞试验、数值模拟和现场监测,深入分析不同风速、风向及工况下的风致响应特性,并基于疲劳寿命理论研究塔机在复杂载荷组合下的损伤机制及疲劳寿命预测方法,为设计优化和维护管理提供依据。未来需结合多物理场耦合模型、智能监测技术,完善风致响应与疲劳寿命预测体系,为塔机的安全性评估和使用寿命延长提供更加精准的技术支持。
Tower cranes are widely used in construction and engineering fields, where their safety and reliability are critical to construction efficiency and personnel safety. In complex wind environments, wind-induced response and fatigue life are key factors affecting tower crane performance. Through wind tunnel tests, numerical simulations, and field monitoring, the wind-induced response characteristics under various wind speeds, directions, and working conditions are analyzed in depth. Based on fatigue life theory, the damage mechanisms under complex load combinations and fatigue life prediction methods for tower cranes are investigated, providing a foundation for design optimization and maintenance management. In the future, it is necessary to integrate multi-physics coupling analysis, intelligent monitoring technologies, and advanced materials to enhance the wind-induced response and fatigue life prediction systems. This will offer more precise technical support for safety assessments and service life extensions of tower cranes.
[1] | Jiang, W. and Ding, L. (2024) Unsafe Hoisting Behavior Recognition for Tower Crane Based on Transfer Learning. Automation in Construction, 160, Article ID: 105299. https://doi.org/10.1016/j.autcon.2024.105299 |
[2] | Jeong, I., Hwang, J., Kim, J., Chi, S., Hwang, B. and Kim, J. (2023) Vision-Based Productivity Monitoring of Tower Crane Operations during Curtain Wall Installation Using a Database-Free Approach. Journal of Computing in Civil Engineering, 37, Article ID: 04023015. https://doi.org/10.1061/jccee5.cpeng-5105 |
[3] | 宋世军, 臧泓源, 杨蕊, 等. 塔式起重机塔身钢结构不同损伤部位特征研究[J]. 噪声与振动控制, 2023, 43(5): 109-114. |
[4] | 陈伟, 王利莹, 杨劼, 等. 基于关联规则的塔式起重机事故致因网络模型研究[J]. 安全与环境学报, 2023, 23(4): 1161-1168. |
[5] | Zhou, W., Zhao, T., Liu, W. and Tang, J. (2018) Tower Crane Safety on Construction Sites: A Complex Sociotechnical System Perspective. Safety Science, 109, 95-108. https://doi.org/10.1016/j.ssci.2018.05.001 |
[6] | 陈易明, 朱才朝, 宋朝省, 等. 基于TMD的单柱式海上风力发电机系统动态特性分析[J]. 太阳能学报, 2020, 41(10): 276-284. |
[7] | 朱朋冲, 徐建坤, 裴超超, 等. 塔式起重机吊臂钢丝绳风致振动响应分析[J]. 建筑结构, 2022, 52(S2): 2031-2037. |
[8] | 崔少杰. 动臂塔式起重机动态特性及优化设计研究[D]: [博士学位论文]. 天津: 河北工业大学, 2015. |
[9] | 余震. 常规工况下塔机整体钢结构应力分析及其振动特性研究[J]. 电焊机, 2017, 42(5): 22-27. |
[10] | 陈鹏. 风载作用下大型钢结构吊装过程安全性分析[D]: [硕士学位论文]. 南京: 东南大学, 2017. |
[11] | 韩松君, 李莉. 平头塔机整机振动模态及振动响应分析[J]. 起重运输机械, 2018(4): 128-131. |
[12] | 王永岩, 蔡亚东, 乔有涛, 等. 风荷载作用下塔式起重机结构的随机振动分析[J]. 中国工程机械学报, 2024, 22(3): 375-378+403. |
[13] | 胡红波, 孙桥, 白杰. 基于窄脉冲冲击激励的压电加速度计动态校准[J]. 计量学报, 2017, 38(2): 184-188. |
[14] | 李坤, 曾劲, 于明月, 等. 考虑螺栓连接刚度不确定性的带法兰-圆柱壳结构频响函数分析[J]. 振动工程学报, 2020, 33(3): 517-524. |
[15] | 秦仙蓉, 郝婼兰, 徐俭, 等. 考虑边界条件不确定性的塔式起重机有限元模型修正[J]. 振动、测试与诊断, 2018, 38(1): 92-96. |
[16] | 陈亚钊. 强风环境中塔式起重机抗风性能研究[D]: [硕士学位论文]. 福州: 福州大学, 2021. |
[17] | 蔡康, 郅伦. 海环境风激励下超高层建筑模态参数识别[J]. 应用力学学报, 2021, 38(2): 465-473. |
[18] | Ross, B., McDonald, B. and Vijay Saraf, S.E. (2007) Big Blue Goes Down. The Miller Park Crane Accident. Engineering Failure Analysis, 14, 942-961. https://doi.org/10.1016/j.engfailanal.2006.12.002 |
[19] | Tomczyk, J., Cink, J. and Kosucki, A. (2014) Dynamics of an Overhead Crane under a Wind Disturbance Condition. Automation in Construction, 42, 100-111. https://doi.org/10.1016/j.autcon.2014.02.013 |
[20] | Klinger, C. (2014) Failures of Cranes Due to Wind Induced Vibrations. Engineering Failure Analysis, 43, 198-220. https://doi.org/10.1016/j.engfailanal.2013.12.007 |
[21] | Mara, T.G. (2010) Effects of a Construction Tower Crane on the Wind Loading of a High-Rise Building. Journal of Structural Engineering, 136, 1453-1460. https://doi.org/10.1061/(asce)st.1943-541x.0000243 |
[22] | Voisin, D., Grillaud, G., Solliec, C., Beley-Sayettat, A., Berlaud, J. and Miton, A. (2004) Wind Tunnel Test Method to Study Out-of-Service Tower Crane Behaviour in Storm Winds. Journal of Wind Engineering and Industrial Aerodynamics, 92, 687-697. https://doi.org/10.1016/j.jweia.2004.03.005 |
[23] | 王澄. 不同风况下港口起重机风致响应研究[D]: [硕士学位论文]. 天津: 天津理工大学, 2021. |
[24] | 马晋, 王子通, 周岱, 等. 典型塔式起重机塔架结构风致动力响应与疲劳分析[J]. 上海交通大学学报, 2014, 48(6): 804-808. |
[25] | Gur, S. and Ray-Chaudhuri, S. (2013) Vulnerability Assessment of Container Cranes under Stochastic Wind Loading. Structure and Infrastructure Engineering, 10, 1511-1530. https://doi.org/10.1080/15732479.2013.834943 |
[26] | 符康, 于兰峰, 程兵, 等. 塔式起重机结构风致响应分析[J]. 现代制造工程, 2017(7): 138-142. |
[27] | Jiang, H. and Li, Y. (2019) Dynamic Reliability Analysis of Tower Crane with Wind Loading. IOP Conference Series: Materials Science and Engineering, 677, Article ID: 052031. https://doi.org/10.1088/1757-899x/677/5/052031 |
[28] | 霍东敏. 高塔风力发电机专用塔式起重机的抗风性能研究[D]: [硕士学位论文]. 太原: 太原科技大学, 2020. |
[29] | 臧付连. 门式起重机门架结构风致振动研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2021. |
[30] | 赵威威. 基于试验的在役塔式起重机疲劳寿命分析[D]: [硕士学位论文]. 大连: 大连理工大学, 2012. |
[31] | 查雅妮. WQ6 平头塔式起重机的疲劳寿命研究[D]: [硕士学位论文]. 广州: 暨南大学, 2010. |
[32] | 董攀浩. 基于应变测量的塔吊疲劳监测系统研究与设计[D]: [硕士学位论文]. 天津: 天津工业大学, 2018. |
[33] | 周凯笛. 起重机械结构健康监测系统的研究与开发[D]: [硕士学位论文]. 南京: 南京理工大学, 2019. |
[34] | Caglayan, O., Ozakgul, K., Tezer, O. and Uzgider, E. (2010) Fatigue Life Prediction of Existing Crane Runway Girders. Journal of Constructional Steel Research, 66, 1164-1173. https://doi.org/10.1016/j.jcsr.2010.04.009 |
[35] | 渠晓刚, 温鑫, 张晓康. 基于损伤力学的桥式起重机疲劳寿命分析[J]. 安全与环境学报, 2021, 21(3): 1012-1016. |
[36] | Yang, M., Chang, Z., Xu, G., Wang, C. and Wang, P. (2020) Analysis on Fatigue Life of Overhead Travelling Crane Girder under Impact Load for Sustainable Transport System. IET Intelligent Transport Systems, 14, 1426-1432. https://doi.org/10.1049/iet-its.2019.0656 |
[37] | 左旸. 基于神经网络获取应力谱的塔机疲劳寿命评估[D]: [硕士学位论文]. 太原: 太原科技大学, 2021. |
[38] | 董兴建, 李鸿光, 孟光. 岸桥起重机随机风振疲劳可靠性分析[J]. 振动工程学报, 2013, 26(6): 901-907. |
[39] | 刘俊卿, 马岩, 曹书文. 基于等效结构应力法的塔吊焊接节点疲劳寿命评估[J]. 沈阳工业大学学报, 2021, 43(5): 522-528. |
[40] | 范小宁, 徐格宁, 王爱红. 基于人工神经网络获取起重机当量载荷谱的疲劳剩余寿命估算方法[J]. 机械工程学报, 2011, 47(20): 69-74. |
[41] | 范小宁, 罗志宏. 等高线法的桥式起重机主梁损伤识别[J]. 中国工程机械学报, 2021, 19(2): 170-175. |
[42] | 王爱红, 徐格宁, 高有山. 桥式起重机随机应力谱获取及疲劳剩余寿命估算[J]. 机械工程学报, 2012, 48(18): 192-198. |