|
砂岩孔隙结构研究现状
|
Abstract:
本文综述了砂岩孔隙结构在非常规油气资源勘探与开发中的重要性,并探讨了不同评估方法的适用性。文章首先强调了砂岩孔隙结构对油气储存和流动特性的影响,以及其对提高采收率和优化勘探开发策略的关键作用。接着,文章介绍了间接测定法(如压汞法、半透膜法、离心法)、直接观测法(如铸体薄片法、扫描电子显微镜、计算机断层扫描)和测井资料评价方法(如电阻率法、核磁共振法、声波时差法)等技术,并分析了它们的优势与局限性。最后,文章得出结论,砂岩孔隙结构的研究对油气资源的有效开发至关重要,有助于保障能源安全、推动技术进步、保护环境以及实现社会经济的可持续发展。随着技术的发展,未来有望进一步提升油气资源的开采效率,实现资源的充分利用,为全球能源的持续发展贡献力量。
This article reviews the importance of sandstone pore structure in the exploration and development of unconventional oil and gas resources and discusses the applicability of different evaluation methods. The article first emphasizes the impact of sandstone pore structure on the storage and flow characteristics of oil and gas, as well as its key role in improving recovery rates and optimizing exploration and development strategies. It then introduces indirect measurement techniques (such as mercury injection, semi-permeable membrane, and centrifugation methods), direct observation methods (such as thin section casting, scanning electron microscopy, and computed tomography), and logging data evaluation methods (such as resistivity, nuclear magnetic resonance, and sonic time difference methods), and analyzes their advantages and limitations. Finally, the article concludes that the study of sandstone pore structure is crucial for the effective development of oil and gas resources, contributing to energy security, technological progress, environmental protection, and sustainable socio-economic development. With technological advancements, it is expected that the efficiency of oil and gas resource development will be further improved in the future, realizing the full utilization of resources and contributing to the sustainable development of global energy.
[1] | 汪贺, 师永民, 徐大卫, 等. 非常规储层孔隙结构表征技术及进展[J]. 油气地质与采收率, 2019, 26(5): 21-30. |
[2] | 张驰, 关平, 张济华, 等. 分形理论表征非常规油气储层孔隙结构特征研究进展[J]. 北京大学学报(自然科学版), 2023, 59(5): 897-908. |
[3] | 车荣华. 低渗透油层微观孔隙结构研究[D]: [硕士学位论文]. 大庆: 东北石油大学, 2016. |
[4] | Tsakiroglou, C.D. and Payatakes, A.C. (2000) Characterization of the Pore Structure of Reservoir Rocks with the Aid of Serial Sectioning Analysis, Mercury Porosimetry and Network Simulation. Advances in Water Resources, 23, 773-789. https://doi.org/10.1016/s0309-1708(00)00002-6 |
[5] | Hao, L., Tang, J., Wang, Q., Tao, H., Ma, X., Ma, D., et al. (2017) Fractal Characteristics of Tight Sandstone Reservoirs: A Case from the Upper Triassic Yanchang Formation, Ordos Basin, China. Journal of Petroleum Science and Engineering, 158, 243-252. https://doi.org/10.1016/j.petrol.2017.08.060 |
[6] | Clarkson, C.R. and Bustin, R.M. (1999) The Effect of Pore Structure and Gas Pressure Upon the Transport Properties of Coal: A Laboratory and Modeling Study. 2. Adsorption Rate Modeling. Fuel, 78, 1345-1362. https://doi.org/10.1016/s0016-2361(99)00056-3 |
[7] | 何更生. 油层物理[M]. 北京: 石油工业出版社, 1994. |
[8] | 赵华伟. 致密储层微观孔隙结构及渗流规律研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2017. |
[9] | 李鑫. 致密储层孔隙结构综合评价方法研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2017. |
[10] | 张维. 基于常规测井资料的储层微观孔隙结构评价方法[D]: [硕士学位论文]. 大庆: 东北石油大学, 2017. |
[11] | 张冲, 张超谟, 张占松, 等. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2): 352-358. |
[12] | 李霏, 陈铭谦, 赵御庭, 等. 岩石微观孔隙结构研究方法综述[J]. 地下水, 2019, 41(6): 112-114. |
[13] | 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31. |
[14] | 王伟明, 卢双舫, 田伟超, 等. 利用微观孔隙结构参数对辽河大民屯凹陷页岩储层分级评价[J]. 中国石油大学学报: 自然科学版, 2016, 40(4): 12-19. |
[15] | 李昊远. 氮气吸附法的致密砂岩孔隙结构分析[J]. 云南化工, 2019, 46(12): 87-90. |
[16] | 戚灵灵, 王兆丰, 杨宏民, 等. 基于低温氮吸附法和压汞法的煤样孔隙研究[J]. 煤炭科学技术, 2012, 40(8): 36-39. |
[17] | 谢晓永, 唐洪明, 王春华, 等. 氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J]. 天然气工业, 2006, 26(12): 100-102. |
[18] | 宋梓语. 塔里木油田克深地区砂岩酸化伤害实验研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2018. |
[19] | 常敏. 准噶尔盆地车排子地区白垩系清水河组储层特征研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2017. |
[20] | Bonnet, N., Herbin, M. and Vautrot, P. (1997) Multivariate Image Analysis and Segmentation in Microanalysis. Scanning Microscopy, 11, 1-21. |
[21] | Zhang, Y., Ghanbarnezhad Moghanloo, R. and Davudov, D. (2019) Pore Structure Characterization of a Shale Sample Using SEM Images. SPE Western Regional Meeting, San Jose, 23-26 April 2019, SPE-195352-MS. https://doi.org/10.2118/195352-ms |
[22] | Nadeau, P.H. and Hurst, A.H. (1991) Application of Back-Scattered Electron Microscopy to the Quantification of Clay Mineral Microporosity in Sandstones. SEPM Journal of Sedimentary Research, 61, 921-925. https://doi.org/10.1306/d4267807-2b26-11d7-8648000102c1865d |
[23] | Cerepi, A., Humbert, L. and Burlot, R. (2001) Petrophysical Properties of Porous Medium from Petrographic Image Analysis Data. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187, 233-256. https://doi.org/10.1016/s0927-7757(01)00636-7 |
[24] | 邹俊鹏, 陈卫忠, 杨典森, 等. 基于SEM的珲春低阶煤微观结构特征研究[J]. 岩石力学与工程学报, 2016, 35(9): 1805-1814. |
[25] | 贾慧敏. 高煤阶煤岩孔隙结构分形特征研究[J]. 石油化工高等学校学报, 2016, 29(1): 53-56+85. |
[26] | 李吉平. 扫描电镜下寺河井田3号煤微孔裂隙特征研究[J]. 煤, 2019, 28(4): 2224+2259. |
[27] | 吴立新, 陈方玉. 现代扫描电镜的发展及其在材料科学中的应用[J]. 武钢技术, 2005(6): 36-40. |
[28] | 徐拴海, 邢龙龙, 王国强, 等. 超细水泥浆液在微裂隙岩体中的注浆试验研究[J]. 中国安全生产科学技术, 2014, 10(6): 96-102. |
[29] | 林磊. 高家堡煤矿洛河组砂岩沉积控水规律研究[D]: [硕士学位论文]. 西安: 西安科技大学, 2020. |
[30] | 冯龙飞, 王双明, 王海, 等. 彬长高家堡煤矿洛河组砂岩微观孔隙特征研究[J]. 煤炭科学技术, 2023(47): 1-10. |
[31] | 王丽, 袁伟, 程光华, 等. 基于常规测井的储层孔隙结构评价新方法[J]. 海洋石油, 2018, 38(2): 58-65. |
[32] | 陈超, 魏彪, 梁婷, 等. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013, 37(3): 500-507. |
[33] | Kazak, A., Chugunov, S. and Chashkov, A. (2018) Integration of Large-Area Scanning-Electron-Microscopy Imaging and Automated Mineralogy/Petrography Data for Selection of Nanoscale Pore-Space Characterization Sites. SPE Reservoir Evaluation & Engineering, 21, 821-836. https://doi.org/10.2118/191369-pa |
[34] | 吴松涛, 朱如凯, 李勋, 等. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘, 2018, 25(2): 191-203. |
[35] | 汪贺, 师永民, 徐大卫, 等. 非常规储层孔隙结构表征技术及进展[J]. 油气地质与采收率, 2019, 26(5): 21-30. |
[36] | 张芥瑜, 张凤奇, 刘阳, 等. 鄂尔多斯盆地WL 地区延长组储层成岩作用与孔隙结构差异成因[J]. 地质科技通报, 2023, 42(6): 162-173. |
[37] | Wang, Y., Yang, S., Zhang, Y., Lu, Y., Wang, Y. and Zhao, Y. (2020) Investigation of Pore Structure and Reservoir Quality of Eocene Beach-Bar Sandstones in Dongying Depression, Bohai Bay Basin, East China. Journal of Petroleum Science and Engineering, 189, Article 106854. https://doi.org/10.1016/j.petrol.2019.106854 |
[38] | Lai, J., Wang, G., Cao, J., Xiao, C., Wang, S., Pang, X., et al. (2018) Investigation of Pore Structure and Petrophysical Property in Tight Sandstones. Marine and Petroleum Geology, 91, 179-189. https://doi.org/10.1016/j.marpetgeo.2017.12.024 |
[39] | Ge, X., Fan, Y., Cao, Y., Xu, Y., Liu, X. and Chen, Y. (2014) Reservoir Pore Structure Classification Technology of Carbonate Rock Based on NMR T 2 Spectrum Decomposition. Applied Magnetic Resonance, 45, 155-167. https://doi.org/10.1007/s00723-013-0511-5 |
[40] | 王学武, 杨正明, 李海波, 等. 核磁共振研究低渗透储层孔隙结构方法[J]. 西南石油大学学报: 自然科学版, 2010, 32(2): 70-72. |
[41] | 陈国军, 高明, 李静, 等. 核磁共振测井在致密储层孔隙结构评价中的应用[J]. 天然气勘探与开发, 2014, 37(2): 41-44. |
[42] | Huang, X., Li, A., Li, X. and Liu, Y. (2019) Influence of Typical Core Minerals on Tight Oil Recovery during CO2 Flooding Using the Nuclear Magnetic Resonance Technique. Energy & Fuels, 33, 7147-7154. https://doi.org/10.1021/acs.energyfuels.9b01220 |
[43] | 刘堂宴, 王绍民, 傅容珊, 等. 核磁共振谱的岩石孔喉结构分析[J]. 石油地球物理勘探, 2003, 38(3): 328-333. |
[44] | 何雨丹, 毛志强, 肖立志, 等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报: 地球科学版, 2005, 35(2): 177-181. |
[45] | 童茂松. 泥质砂岩激发极化弛豫时间谱的正则化反演[J]. 物探与化探, 2015, 39(1): 186-191. |
[46] | Eslami, M., Kadkhodaie-Ilkhchi, A., Sharghi, Y. and Golsanami, N. (2013) Construction of Synthetic Capillary Pressure Curves from the Joint Use of NMR Log Data and Conventional Well Logs. Journal of Petroleum Science and Engineering, 111, 50-58. https://doi.org/10.1016/j.petrol.2013.10.010 |
[47] | Xiao, L., Zou, C., Mao, Z., Jin, Y., Shi, Y., Guo, H., et al. (2016) An Empirical Approach of Evaluating Tight Sandstone Reservoir Pore Structure in the Absence of NMR Logs. Journal of Petroleum Science and Engineering, 137, 227-239. https://doi.org/10.1016/j.petrol.2015.11.035 |
[48] | 陈文祥. 致密砂岩油藏孔隙特征与衰竭式开采实验研究[D]: [硕士学位论文]. 北京: 中国地质大学, 2019. |
[49] | 杨明, 刘亚鹏. 高阶煤孔隙特征的低场核磁共振实验研究[J]. 中国安全生产科学技术, 2016, 12(11): 63-69. |
[50] | 李志愿, 崔云江, 关叶钦, 等. 基于孔径分布和T2谱的低孔渗储层渗透率确定方法[J]. 中国石油大学学报(自然科学版), 2018, 42(4): 34-40. |
[51] | 朱林奇, 张冲, 胡佳, 等. 基于单元体模型的核磁共振测井渗透率评价方法[J]. 石油钻探技术, 2016, 44(4): 120-126. |
[52] | 马会腾, 翟成, 徐吉钊, 等. 基于NMR技术的超声波频率对煤体激励致裂效果的影响[J]. 煤田地质与勘探, 2019, 47(4): 38-44. |
[53] | 黄家国, 许开明, 郭少斌, 等. 基于SEM、NMR和CT的页岩储层孔隙结构综合研究[J]. 现代地质, 2015, 29(1): 198-205. |
[54] | 侯波, 康洪全, 程涛. 综合成岩作用和孔隙形状的岩石物理模型及其应用[J]. 物探与化探, 2019, 43(1): 161-167. |
[55] | Tao, G. and King, M.S. (1993) Porosity and Pore Structure from Acoustic Well Logging Data1. Geophysical Prospecting, 41, 435-451. https://doi.org/10.1111/j.1365-2478.1993.tb00578.x |
[56] | Sun, Y. (2004) A Two-Parameter Model of Elastic Wave Velocities in Rocks and Numerical AVO Modeling. Journal of Computational Acoustics, 12, 619-630. https://doi.org/10.1142/s0218396x04002432 |
[57] | Eberli, G.P., Baechle, G.T., Anselmetti, F.S. and Incze, M.L. (2003) Factors Controlling Elastic Properties in Carbonate Sediments and Rocks. The Leading Edge, 22, 654-660. https://doi.org/10.1190/1.1599691 |
[58] | 唐晓明. 含孔隙、裂隙介质弹性波动的统一理论-Biot理论的推广[J]. 中国科学: 地球科学, 2011, 41(6): 784-795. |
[59] | 陈雪莲, 唐晓明, 钱玉萍. 含孔隙、裂隙致密介质中多极子声波的传播特征[J]. 地球物理学报, 2014, 57(9): 2961-2970. |
[60] | 张明明, 梁利喜, 蒋少龙. 不同孔隙结构碳酸盐岩对声波时频特性的影响[J]. 断块油气田, 2016, 23(6): 825-828. |
[61] | 承秋泉, 陈红宇, 范明, 等. 盖层全孔隙结构测定方法[J]. 石油实验地质, 2006, 28(6): 604-608. |
[62] | 李宁. 火成岩储层孔隙结构表征与储层参数分类评价[D]: [硕士学位论文]. 长春: 吉林大学, 2010. |
[63] | 黄婧. 多孔介质孔隙结构研究综述[J]. 内江师范学院学报, 2016, 31(4): 13-18. |
[64] | Clelland, W.D. and Fens, T.W. (1991) Automated Rock Characterization with Sem/lmage-Analysis Techniques. SPE Formation Evaluation, 6, 437-443. https://doi.org/10.2118/20920-pa |
[65] | 夏培. 含泥质致密砂岩储层三孔隙导电模型[J]. 物探与化探, 2017, 41(4): 748-752. |
[66] | 范雨霏, 潘保芝, 张芳. 复杂孔隙几何形态导电理论与火山岩饱和度模型研究[J]. 物探与化探, 2018, 42(1): 172-177. |
[67] | Li, C., Liu, M. and Guo, B. (2019) Classification of Tight Sandstone Reservoirs Based on NMR Logging. Applied Geophysics, 16, 549-558. https://doi.org/10.1007/s11770-019-0793-y |
[68] | Wang, L., Zhang, Y., Zou, R., Zou, R., Huang, L., Liu, Y., et al. (2023) Molecular Dynamics Investigation of DME Assisted CO2 Injection to Enhance Shale Oil Recovery in Inorganic Nanopores. Journal of Molecular Liquids, 385, Article 122389. https://doi.org/10.1016/j.molliq.2023.122389 |
[69] | 胡伟. 水驱油藏注气驱油机理及渗流规律研究[D]: [博士学位论文]. 北京: 中国石油大学, 2018. |
[70] | 郑超, 祁笑寒, 赵爱芳, 等. 致密砂岩储层微观孔隙结构特征及其对油水渗流的影响[J/OL]. 西安石大学学报(自然科学报), 1-10. http://kns.cnki.net/kcms/detail/61.1435.TE.20241126.1222.012.html, 2024-12-15. |