全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

桂北都庞岭地区猫儿石锡多金属矿床流体特征与成矿机制研究
Fluid Characteristics and Metallogenic Mechanism of the Maoershi Tin Polymetallic Deposits in the Dupangling Area of Northern Guangxi

DOI: 10.12677/ag.2025.151012, PP. 104-114

Keywords: 流体包裹体,成矿机制,猫儿石锡多金属矿床,都庞岭,桂北
Fluid Inclusions
, Ore-Forming Mechanism, Maoershi Sn Polymetallic Deposit, Dupangling Area, Northern Guangxi

Full-Text   Cite this paper   Add to My Lib

Abstract:

桂北都庞岭地区位于北东向钦杭成矿带与东西向南岭成矿带的复合部位,区域内的锡多金属矿床尚未开展流体包裹体方面的分析测试工作,成矿机制一直未能准确限定。为精确刻画区域内锡多金属成矿作用过程,本文对猫儿石锡多金属矿床开展了流体包裹体显微测温和氢氧同位素分析。研究显示,流体包裹体类型较为简单,主要为富液两相包裹体和少量富气两相包裹体。从早到晚均一温度依次为281℃~415℃、231℃~280℃和154℃~230℃,对应盐度为4.63%~12.42% NaCleqv (平均9.69%)、3.21%~13.66% NaCleqv (平均9.24%)和2.06%~16.14% NaCleqv (平均8.71%)。富液两相包裹体气相和液相成分均为H2O,富气两相包裹体流体成分除H2O外,还含有少量CO2、N2、CH4δDv-SMOW值为?55.1‰~?67.1‰;δ18 Ov-SMOW值为10.2‰~12.9‰,初步厘定初始成矿流体为贫CO2的H2O-NaCl体系的岩浆热液,成矿期逐渐向大气降水靠近。印支期岩浆结晶分异形成的富锡多金属流体沿断裂上升过程中,与大气降水混合,导致成矿物质卸载。因此,流体混合是猫儿石锡多金属矿床锡的主要成矿机制。
The Dupangling area in northern Guangxi is situated within the composite section of the northeast Qinhang metallogenic belt and the east-west Nanling metallogenic belt. The analysis and testing of fluid inclusions in the Sn polymetallic deposits in this area have yet to be conducted, and the metallogenic mechanism remains to be accurately defined. In order to provide an accurate description of the mineralisation process of Sn polymetallic deposits in the region, this paper employed micro thermometry and hydrogen-oxygen isotope analysis of fluid inclusions in the Maoershi Sn polymetallic deposit. The study demonstrates that the types of fluid inclusions are relatively simple, comprising primarily liquid-rich two-phase inclusions and a minor quantity of gas-rich two-phase inclusions. The homogenisation temperatures ranged from 281?C to 415?C, 231?C to 280?C and 154?C to 230?C, with corresponding salinities of 4.63 to 12.42 wt% NaClequiv (average 9.69%), 3.21 to 13.66 wt% NaClequiv (average 9.24%) and 2.06 to 16.14 wt% NaClequiv (average 8.71%). The gas and liquid components of the liquid-rich two-phase inclusions are both constituted by H2O. In addition to H2O, the fluid components of the gas-rich two-phase inclusions also contain a small amount of carbon dioxide, nitrogen and methane. The δD value was found to be in the range of ?55.1‰ to ?67.1‰ VSMOW. The δ18O water values span a range of 10.2‰ to 12.9‰ VSMOW, indicative of an initial ore-forming fluid comprising CO2-poor H2O-NaCl magmatic hydrothermal components, with the ore-forming period gradually

References

[1]  徐德明, 付建明, 陈希清, 等. 都庞岭环斑花岗岩的形成时代、成因及其地质意义[J]. 大地构造与成矿学, 2017, 41(3): 561-576.
[2]  陈迪, 罗鹏, 曾志方, 等. 湘南都庞岭复式花岗岩成因及地质意义: 矿物化学、锆石U-Pb年代学、地球化学与Nd-Hf同位素制约[J]. 地质力学学报, 2022, 28(4): 617-641.
[3]  龚名文, 陆小平, 路启福, 等. 都庞岭地区锡多金属矿床地质特征及矿床成因[J]. 华南地质与矿产, 2005(2): 80-86.
[4]  李晓峰, 冯佐海, 肖荣, 等. 桂东北钨锡稀有金属矿床的成矿类型、成矿时代及其地质背景[J]. 地质学报, 2012, 86(11): 1713-1725.
[5]  陆小平. 桂东北地区钨锡找矿潜力与成矿预测初步探讨[J]. 矿产与地质, 2009, 23(4): 316-321, 334.
[6]  Hui, Z., Lingan, B., Chongjin, P., Yu, D., Zuohai, F., Xijun, L., et al. (2023) Indosinian W-Sn Mineralization in the Dupangling Area, Western Nanling: Cassiterite U-Pb Dating and Trace Element Data for the Maoershi Sn Polymetallic Deposit. Ore Geology Reviews, 163, Article ID: 105807.
https://doi.org/10.1016/j.oregeorev.2023.105807
[7]  曹瑞欣. 广西栗木水溪庙矿化花岗岩特征及岩体成因研究[D]: [硕士学位论文]. 北京: 中国地质大学, 2009.
[8]  马丽艳, 付建明, 程顺波, 等. 广西栗木锡铌钽矿田矿化花岗岩锆石SHRIMP U-Pb定年及其意义[J]. 华南地质与矿产, 2013, 29(4): 292-298.
[9]  Feng, M., Feng, Z., Kang, Z., Fu, W., Qing, Y., Hu, R., et al. (2019) Establishing an Indosinian Geochronological Framework for Episodic Granitic Emplacement and W-Sn-Nb-Ta Mineralization in Limu Mining District, South China. Ore Geology Reviews, 107, 1-13.
https://doi.org/10.1016/j.oregeorev.2019.02.012
[10]  Huang, W., Wu, J., Liang, H., Zhang, J., Ren, L. and Chen, X. (2020) Ages and Genesis of W-Sn and Ta-Nb-Sn-W Mineralization Associated with the Limu Granite Complex, Guangxi, China. Lithos, 352, Article ID: 105321.
https://doi.org/10.1016/j.lithos.2019.105321
[11]  邓贵安, 吴继炜, 汪恕生, 等. 栗木矿田三个黄牛花岗岩型钨锡矿床地质特征[J]. 矿产与地质, 2012, 26(1): 1-6.
[12]  解惠, 田景春, 张桂林, 等. 广西南竹河锡多金属矿床地质特征与构造控矿规律[J]. 成都理工大学学报(自然科学版), 2010, 37(3): 273-278.
[13]  邹先武, 崔森, 屈文俊, 等. 广西都庞岭李贵福钨锡多金属矿Re-Os同位素定年研究[J]. 中国地质, 2009, 36(4): 837-844.
[14]  Clayton, R.N. and Mayeda, T.K. (1963) The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochimica Acta, 27, 43-52.
https://doi.org/10.1016/0016-7037(63)90071-1
[15]  Coleman, M.L., Shepherd, T.J., Durham, J.J., Rouse, J.E. and Moore, G.R. (1982) Reduction of Water with Zinc for Hydrogen Isotope Analysis. Analytical Chemistry, 54, 993-995.
https://doi.org/10.1021/ac00243a035
[16]  Hall, D.L., Sterner, S.M. and Bodnar, R.J. (1988) Freezing Point Depression of Nacl-Kcl-H2O Solutions. Economic Geology, 83, 197-202.
https://doi.org/10.2113/gsecongeo.83.1.197
[17]  Potter, R.W. (1978) The Volumetric Properties of Aqueous Sodium Chloride Solutions from 0˚C to 500˚C at Pressures up to 2000 Based on a Regression of Available Data in the Literature. Geological Survey Bulletin 1421-C.
[18]  Bodnar, R.J. (1983) A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 78, 535-542.
https://doi.org/10.2113/gsecongeo.78.3.535
[19]  Clayton, R.N., O’Neil, J.R. and Mayeda, T.K. (1972) Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77, 3057-3067.
https://doi.org/10.1029/jb077i017p03057
[20]  Hedenquist, J.W. and Lowenstern, J.B. (1994) The Role of Magmas in the Formation of Hydrothermal Ore Deposits. Nature, 370, 519-527.
https://doi.org/10.1038/370519a0
[21]  Wu, J., Li, H., Mathur, R., Bouvier, A., Powell, W., Yonezu, K., et al. (2023) Compositional Variation and Sn Isotope Fractionation of Cassiterite during Magmatic-Hydrothermal Processes. Earth and Planetary Science Letters, 613, Article ID: 118186.
https://doi.org/10.1016/j.epsl.2023.118186
[22]  Liu, X., Yu, P. and Xiao, C. (2023) Tin Transport and Cassiterite Precipitation from Hydrothermal Fluids. Geoscience Frontiers, 14, Article ID: 101624.
https://doi.org/10.1016/j.gsf.2023.101624
[23]  任涛, 李欢. 与花岗岩有关的锡成矿研究进展[J]. 中南大学学报(自然科学版), 2022, 53(2): 514-534.
[24]  Ni, P., Wang, X., Wang, G., Huang, J., Pan, J. and Wang, T. (2015) An Infrared Microthermometric Study of Fluid Inclusions in Coexisting Quartz and Wolframite from Late Mesozoic Tungsten Deposits in the Gannan Metallogenic Belt, South China. Ore Geology Reviews, 65, 1062-1077.
https://doi.org/10.1016/j.oregeorev.2014.08.007
[25]  Xiong, Y., Shao, Y., Zhou, H., Wu, Q., Liu, J., Wei, H., et al. (2017) Ore-Forming Mechanism of Quartz-Vein-Type W-Sn Deposits of the Xitian District in SE China: Implications from the Trace Element Analysis of Wolframite and Investigation of Fluid Inclusions. Ore Geology Reviews, 83, 152-173.
https://doi.org/10.1016/j.oregeorev.2016.12.007
[26]  Peng, N., Jiang, S., Xiong, S. and Pi, D. (2018) Fluid Evolution and Ore Genesis of the Dalingshang Deposit, Dahutang W-Cu Ore Field, Northern Jiangxi Province, South China. Mineralium Deposita, 53, 1079-1094.
https://doi.org/10.1007/s00126-018-0796-2
[27]  王旭东, 倪培, 袁顺达, 等. 赣南木梓园钨矿流体包裹体特征及其地质意义[J]. 中国地质, 2012, 39(6): 1790-1797.
[28]  陈剑锋, 杜云, 熊伊曲, 等. 南岭加里东期钨锡矿床成矿机制研究: 以湘西南落家冲矿床为例[J]. 岩石学报, 2023, 39(6): 1693-1716.
[29]  李响, 王令占, 涂兵, 等. 粤西北印支期太保岩体的锆石U-Pb年代学、地球化学及岩石成因[J]. 地球科学, 2021, 46(4): 1199-1216.
[30]  陈江峰, 郭新生, 汤加富, 等. 中国东南地壳增长与Nd同位素模式年龄[J]. 南京大学学报(自然科学版), 1999, 35(6): 649-658.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133