全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

群体智能算法在无人机路径规划中的应用
Application of Swarm Intelligence Algorithms in Drone Path Planning

DOI: 10.12677/csa.2025.151003, PP. 21-27

Keywords: 路径规划,群体智能,无人机
Path Planning
, Swarm Intelligence, Drones

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着无人机技术的快速发展,路径规划作为其核心技术,面临着复杂多变飞行环境和多样化任务需求的挑战。然而,传统路径规划算法在特定场景下虽表现出色,但计算量大、规划时间长且难以适应动态变化,限制了无人机的广泛应用。针对此,群体智能算法凭借其全局搜索能力强、鲁棒性好、易于并行化及广泛适用性,成为无人机路径规划领域的研究热点。本文主要探讨了几种典型的群体智能算法在无人机路径规划中的应用,并对无人机路径规划的未来研究方向进行展望。
With the rapid development of drone technology, path planning, as its core technology, faces the challenges of complex and variable flight environments and diverse task requirements. However, traditional path planning algorithms, although performing well in specific scenarios, have high computational complexity, long planning time, and difficulty in adapting to dynamic changes, limiting the widespread application of drones. In response to this, swarm intelligence algorithms, which are characterized by their strong global search ability, good robustness, easy parallelization, and wide applicability, have become a research hotspot in the field of drone path planning. This paper mainly explores the application of several typical swarm intelligence algorithms in drone path planning and looks forward to the future research directions of drone path planning.

References

[1]  Chen, X., Chen, X.M. and Zhang, J. (2014) The Dynamic Path Planning of UAV Based on A* Algorithm. Applied Mechanics and Materials, 494, 1094-1097.
https://doi.org/10.4028/www.scientific.net/amm.494-495.1094

[2]  张飞, 白伟, 乔耀华, 等. 基于改进D*算法的无人机室内路径规划[J]. 智能系统学报, 2019, 14(4): 662-669.
[3]  雷耀麟, 丁文锐, 李雅, 等. 群体智能支撑的无人机群航路规划应用综述[J]. 无线电工程, 2023, 53(7): 1509-1519.
[4]  郭莹婷, 林川. 基于无人机航路规划问题的RRT算法综合改进[J]. 电子设计工程, 2022, 30(20): 56-60.
[5]  Kang, T., Kang, J. and Jung, J. (2021) A Bidirectional Interpolation Method for Post-Processing in Sampling-Based Robot Path Planning. Sensors, 21, Article 7425.
https://doi.org/10.3390/s21217425

[6]  BinKai, Q., Mingqiu, L., Yang, Y. and XiYang, W. (2021) Research on UAV Path Planning Obstacle Avoidance Algorithm Based on Improved Artificial Potential Field Method. Journal of Physics: Conference Series, 1948, Article ID: 012060.
https://doi.org/10.1088/1742-6596/1948/1/012060

[7]  马云红, 张恒, 齐乐融, 等. 基于改进A*算法的三维无人机路径规划[J]. 电光与控制, 2019, 26(10): 22-25.
[8]  Ma, J., Luo, J., Li, H. and Hu, J. (2022) Research on Path Planning of Vehicle Dynamic Obstacle Avoidance Based on Improved RRT Algorithm. Sixth International Conference on Electromechanical Control Technology and Transportation (ICECTT 2021), Chongqing, 14-16 May 2021, 768-776.
https://doi.org/10.1117/12.2624006

[9]  Karaman, S. and Frazzoli, E. (2011) Sampling-Based Algorithms for Optimal Motion Planning. The International Journal of Robotics Research, 30, 846-894.
https://doi.org/10.1177/0278364911406761

[10]  Jeong, I., Lee, S. and Kim, J. (2019) Quick-RRT*: Triangular Inequality-Based Implementation of RRT* with Improved Initial Solution and Convergence Rate. Expert Systems with Applications, 123, 82-90.
https://doi.org/10.1016/j.eswa.2019.01.032

[11]  Gammell, J.D., Srinivasa, S.S. and Barfoot, T.D. (2014) Informed RRT*: Optimal Sampling-Based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 14-18 September 2014, 2998-3004.
https://doi.org/10.1109/iros.2014.6942976

[12]  Zhou, Y., Su, Y., Xie, A. and Kong, L. (2021) A Newly Bio-Inspired Path Planning Algorithm for Autonomous Obstacle Avoidance of UAV. Chinese Journal of Aeronautics, 34, 199-209.
https://doi.org/10.1016/j.cja.2020.12.018

[13]  王海群, 邓金铭, 张怡, 等. 基于改进混合灰狼优化算法的无人机三维路径规划[J]. 无线电工程, 2024, 54(4): 918-927.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133