全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器视觉的车辆轨迹检测技术
Vehicle Trajectory Detection Technology Based on Machine Vision

DOI: 10.12677/csa.2025.151002, PP. 10-20

Keywords: 机器视觉,车辆轨迹检测,YOLOv8,ByteTrack,智能交通
Machine Vision
, Vehicle Trajectory Detection, YOLOv8, ByteTrack, Intelligent Transportation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高智能交通系统中的监控准确性和实时性,解决传统方法在复杂环境中的局限。本文结合YOLOv8和ByteTrack算法,提出一种新的车辆轨迹检测技术。YOLOv8提高了检测速度和准确率,ByteTrack通过深度学习有效跟踪车辆。首先使用YOLOv8算法对视频流中的每一帧进行实时目标检测,以识别和定位车辆;然后,利用ByteTrack算法对检测到的车辆进行特征提取和运动轨迹跟踪,维持车辆在连续帧中的一致性。为智能交通系统提供了一种技术手段。
This paper aims to improve the monitoring accuracy and real-time performance in intelligent transportation systems, and solve the limitations of traditional methods in complex environments. Combining YOLOv8 and ByteTrack algorithms, this paper proposes a new vehicle trajectory detection technology. YOLOv8 improves the detection speed and accuracy, while ByteTrack effectively tracks vehicles through deep learning. Firstly, YOLOv8 algorithm is used for each frame of video streaming real-time target detection, in order to identify and locate the vehicle; Then, ByteTrack algorithm is used to extract the features and track the motion trajectory of the detected vehicles to maintain the consistency of the vehicles in consecutive frames. It provides a technical method for the intelligent transportation system.

References

[1]  杜学峰, 高越, 杨伟, 等. 基于机器视觉的车辆检测[J]. 汽车实用技术, 2021, 46(15): 48-50.
[2]  汪梓豪, 蔡英凤, 王海, 等. 基于单目视觉运动估计的周边多目标轨迹预测方法[J]. 汽车工程, 2022, 44(9): 1318-1326.
[3]  何维堃, 彭育辉, 黄炜, 等. 基于DeepSort的动态车辆多目标跟踪方法研究[J]. 汽车技术, 2023(11): 27-33.
[4]  贺愉婷, 车进, 吴金蔓. 基于YOLOv5和重识别的行人多目标跟踪方法[J]. 液晶与显示, 2022, 37(7): 880-890.
[5]  李俊彦, 宋焕生, 张朝阳, 等. 基于视频的多目标车辆跟踪及轨迹优化[J]. 计算机工程与应用, 2020, 56(5): 194-199.
[6]  金沙沙, 龙伟, 胡灵犀, 等. 多目标检测与跟踪算法在智能交通监控系统中的研究进展[J]. 控制与决策, 2023, 38(4): 890-901.
[7]  Lou, H., Duan, X., Guo, J., Liu, H., Gu, J., Bi, L., et al. (2023) Dc-yolov8: Small-Size Object Detection Algorithm Based on Camera Sensor. Electronics, 12, Article 2323.
https://doi.org/10.3390/electronics12102323
[8]  Jiang, P., Ergu, D., Liu, F., Cai, Y. and Ma, B. (2022) A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066-1073.
https://doi.org/10.1016/j.procs.2022.01.135
[9]  张文龙, 南新元. 基于改进YOLOv5的道路车辆跟踪算法[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 49-57.
[10]  田松. 基于视频图像的车辆行为轨迹检测技术研究[D]: [硕士学位论文]. 天津: 天津工业大学, 2016.
[11]  刘超, 罗如意, 刘春青, 等. 基于路侧多机视频目标关联与轨迹拼接的车辆连续轨迹构建方法[J]. 交通信息与安全, 2023, 41(3): 80-91.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133