|
基于APOS理论的初中数学概念探究——以分式为例
|
Abstract:
本文基于APOS理论,以初中数学中的分式概念为例,对数学概念教学进行了深入探究。文章首先系统梳理了APOS理论的核心要点,并指出了当前数学概念教学中存在的一些普遍问题。随后,结合分式的教学实际,详细分析了学生在掌握分式概念过程中可能经历的四个阶段,包括活动阶段(Action)、过程阶段(Process)、对象阶段(Object)和图式阶段(Schema),从而揭示分式概念形成和发展的内在规律,并设计相应教学过程。依据所设计的教学过程进行教学实践,课后通过调查问卷与测试成绩分析调查学生分式概念学习情况,数据分析表明,基于APOS理论的分式概念教学过程能达到较好的效果。通过这一探究,本文旨在帮助教师更好地理解分式概念的教学过程,把握学生在不同阶段的学习特点和难点,从而采取针对性的教学策略,提升教学质量。同时,引导学生更有效地掌握分式概念,提高数学学习的效果。
This paper conducts an in-depth exploration of mathematics concept teaching, taking the concept of fractions in junior high school mathematics as an example, based on the APOS theory. It first systematically outlines the core points of the APOS theory and points out some common issues in current mathematics concept teaching. Subsequently, combining the practical teaching of fractions, the paper analyzes in detail the four stages that students may experience in mastering the concept of fractions, including the Action stage, Process stage, Object stage, and Schema stage. This analysis reveals the internal laws governing the formation and development of the fraction concept and designs a corresponding teaching process. Teaching practice is carried out according to the designed teaching process, and a post-class survey is conducted to investigate students’ learning of the fraction concept through questionnaires and test score analysis. Data analysis shows that the fraction concept teaching process based on the APOS theory can achieve good results. Through this exploration, this paper aims to help teachers better understand the teaching process of the fraction concept, grasp the learning characteristics and difficulties of students at different stages, and thereby adopt targeted teaching strategies to improve teaching quality. At the same time, it guides students to more effectively grasp the fraction concept and enhance the effectiveness of mathematics learning.
[1] | 中华人民共和国教育部. 义务教育数学课程标准(2022年版) [M]. 北京: 北京师范大学出版社, 2022. |
[2] | 朱晓霞. 基于APOS理论的分式概念教学研究[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2023. |
[3] | 乔连全. APOS: 一种建构主义的数学学习理论[J]. 全球教育展望, 2001(3): 16-18. |
[4] | 马晓丹. APOS理论探索的反思与超越[J]. 教学与管理, 2020(33): 74-77. |
[5] | 涂荣豹, 王光明, 宁连华. 新编数学教学论[M]. 上海: 华东师范大学出版社, 2006. |
[6] | 李敏. 浅谈数学概念教学中应注意的问题[J]. 民族教育研究, 2006(2): 74-76. |
[7] | 学习内驱力: 好的教育是唤醒[J]. 福建教育, 2024(45): 4. |
[8] | 人民教育出版社课程教材研究所中学数学课程教材研究开发中心. 义务教育教科书数学八年级上册[M]. 北京: 北京师范大学出版社, 2018. |
[9] | 夏咪咪. 基于APOS理论的初中数学概念教学探究——以“一次函数”为例[J]. 数学通讯, 2023(23): 6-8. |
[10] | 杜宣. 分式易错题分析研究[J]. 数学学习与研究, 2016(2): 137. |
[11] | 陈颐潇. 对《分式》易错题的解析和反思[J]. 课程教育研究, 2017(52): 176. |