全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigating Biological Relationships in Burkina Faso Using DNA Testing

DOI: 10.4236/ajmb.2025.151008, PP. 97-109

Keywords: DNA, STR, Identification, Genetic Fingerprint, Burkina Faso

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA testing for biological relationships is becoming increasingly common in Burkina Faso. STR analysis remains the most reliable technique for resolving disputes or claims in court regarding biological relationships. This study aimed to establish the links of biological relationships between subjects by analyzing 21 STR loci. The participants were 14 individuals referred to CERBA by the Justice in 2022. Oral or blood samples were taken for each subject. DNA was extracted, and the analysis of DNA polymorphism by PowerPlex? 21 Kit (Part No. DC8902) was performed by capillary electrophoresis on the ABI PRISM 3130 sequencer. DNA profiles were compiled using the GeneMapper IDX software version 1.2. Of the fourteen subjects examined, twelve of these samples had complete genetic profiles, while the other two had partial and absent profiles. The results confirmed the inclusion of three cases of Paternity, one case of maternity, one case of a relationship of brotherhood, and the exclusion of one case of maternity and one case of a relationship of brotherhood. DNA tests improve the resolution of filiations, but they require ethical and cultural awareness and a strengthened legal framework to prevent and protect society.

References

[1]  Reiche, B., Kögler, A., Morgenstern, K., Brückner, M., Weber, B., Heitkam, T., et al. (2021) Application of Retrotransposon-Based Inter-Sine Amplified Polymorphism (ISAP) Markers for the Differentiation of Common Poplar Genotypes. Canadian Journal of Forest Research, 51, 1650-1663.
https://doi.org/10.1139/cjfr-2020-0209
[2]  Hawkins, J.S., Hu, G., Rapp, R.A., Grafenberg, J.L. and Wendel, J.F. (2008) Phylogenetic Determination of the Pace of Transposable Element Proliferation in Plants: Copia and LINE-Like Elements in Gossypium. Genome, 51, 11-18.
https://doi.org/10.1139/g07-099
[3]  Thomson, J.A., Pilotti, V., Stevens, P., Ayres, K.L. and Debenham, P.G. (1999) Validation of Short Tandem Repeat Analysis for the Investigation of Cases of Disputed Paternity. Forensic Science International, 100, 1-16.
https://doi.org/10.1016/s0379-0738(98)00199-6
[4]  Stoffel, M.A., Humble, E., Paijmans, A.J., Acevedo-Whitehouse, K., Chilvers, B.L., Dickerson, B., et al. (2018) Demographic Histories and Genetic Diversity across Pinnipeds Are Shaped by Human Exploitation, Ecology and Life-History. Nature Communications, 9, Article No. 4836.
https://doi.org/10.1038/s41467-018-06695-z
[5]  Collins, J.R., Stephens, R.M., Gold, B., Long, B., Dean, M. and Burt, S.K. (2003) An Exhaustive DNA Micro-Satellite Map of the Human Genome Using High Performance Computing. Genomics, 82, 10-19.
https://doi.org/10.1016/s0888-7543(03)00076-4
[6]  Edwards, A., Civitello, A., Hammond, H.A. and Caskey, C.T. (1991) DNA Typing and Genetic Mapping with Trimeric and Tetrameric Tandem Repeats. The American Journal of Human Genetics, 49, 746-756.
[7]  Petkovski, E., Keyser-Tracqui, C., Niemeyer, D., Hienne, R. and Ludes, B. (2004) SNPs: Tools for Individual Identification. International Congress Series, 1261, 21-23.
https://doi.org/10.1016/s0531-5131(03)01721-7
[8]  Di Rienzo, A., Peterson, A.C., Garza, J.C., Valdes, A.M., Slatkin, M. and Freimer, N.B. (1994) Mutational Processes of Simple-Sequence Repeat Loci in Human Populations. Proceedings of the National Academy of Sciences, 91, 3166-3170.
https://doi.org/10.1073/pnas.91.8.3166
[9]  Mansuet-Lupo, A., Van Huffel, V. and Rouger, P. (2007) Les empreintes génétiques: Nouvel outil en médecine légale. Immuno-analyse & Biologie Spécialisée, 22, 209-214.
https://doi.org/10.1016/j.immbio.2007.06.001
[10]  Huffel, V.V. (1999) Le polymorphisme de I’ADN applique aux recherches de filiation. Analyse de 877 cas. Transfusion Clinique et Biologique, 6, 236-244.
[11]  Huffine, E., Crews, J., Kennedy, B., Bomberger, K. and Zinbo, A. (2001) Mass Identification of Persons Missing from the Break-Up of the Former Yugoslavia: Structure, Function, and Role of the International Commission on Missing Persons. Croatian Medical Journal, 42, 271-275.
[12]  Parsons, T.J., Huel, R.M.L., Bajunović, Z. and Rizvić, A. (2019) Large Scale DNA Identification: The ICMP Experience. Forensic Science International: Genetics, 38, 236-244.
https://doi.org/10.1016/j.fsigen.2018.11.008
[13]  Dixon, L.A., Dobbins, A.E., Pulker, H.K., Butler, J.M., Vallone, P.M., Coble, M.D., et al. (2006) Analysis of Artificially Degraded DNA Using Strs and SNPs—Results of a Collaborative European (EDNAP) Exercise. Forensic Science International, 164, 33-44.
https://doi.org/10.1016/j.forsciint.2005.11.011
[14]  Watherston, J., McNevin, D., Gahan, M.E., Bruce, D. and Ward, J. (2018) Current and Emerging Tools for the Recovery of Genetic Information from Post Mortem Samples: New Directions for Disaster Victim Identification. Forensic Science International: Genetics, 37, 270-282.
https://doi.org/10.1016/j.fsigen.2018.08.016
[15]  Peprah, E., Xu, H., Tekola-Ayele, F. and Royal, C.D. (2014) Genome-Wide Association Studies in Africans and African Americans: Expanding the Framework of the Genomics of Human Traits and Disease. Public Health Genomics, 18, 40-51.
https://doi.org/10.1159/000367962
[16]  Karantzali, E., Rosmaraki, P., Kotsakis, A., Le Roux-Le Pajolec, M. and Fitsialos, G. (2019) The Effect of FBI CODIS Core STR Loci Expansion on Familial DNA Database Searching. Forensic Science International: Genetics, 43, Article ID: 102129.
https://doi.org/10.1016/j.fsigen.2019.07.008
[17]  Hares, D.R., Kneppers, A., Onorato, A.J. and Kahn, S. (2020) Rapid DNA for Crime Scene Use: Enhancements and Data Needed to Consider Use on Forensic Evidence for State and National DNA Databasing—An Agreed Position Statement by ENFSI, SWGDAM and the Rapid DNA Crime Scene Technology Advancement Task Group. Forensic Science International: Genetics, 48, Article ID: 102349.
https://doi.org/10.1016/j.fsigen.2020.102349
[18]  FBI (2015) Notice of Release of the 2015 FBI Population Data for the Expanded CODIS Core STR Loci: FBI’s DNA Support Unit.
https://ucr.fbi.gov/lab/biometric-analysis/codis/expanded-fbi-str-2015-final-6-16-15.pdf
[19]  Zeye, M.M.J., Ouedraogo, S.Y., Bado, P., Zoure, A.A., Djigma, F.W., Wu, X., et al. (2024) Forensic Autosomal and Gonosomal Short Tandem Repeat Marker Reference Database for Populations in Burkina Faso. Scientific Reports, 14, Article No. 7369.
https://doi.org/10.1038/s41598-024-58179-4
[20]  Zeye, M.M.J., Li, J., Ouedraogo, S.Y., Zha, L., Simpore, J. and Jifeng, C. (2021) Population Data and Genetic Structure Analysis Based on 29 Y-STR Loci among the Ethnolinguistic Groups in Burkina Faso. International Journal of Legal Medicine, 135, 1767-1769.
https://doi.org/10.1007/s00414-021-02544-9
[21]  Zeye, M.M.J., Ouedraogo, S.Y., Millogo, M., Djigma, F.W., Zoure, A.A., Zeba, M., et al. (2024) Forensic DNA Database and Criminal Investigation in the Sahel Region: A Need to Update the National Security Policy? Forensic Sciences Research, 9, owad056.
https://doi.org/10.1093/fsr/owad056
[22]  Millogo, M., Soubeiga, S.T., Bazie, B.V.J.T., Zohoncon, T.M., Ouattara, A.K., Yonli, A.T., et al. (2021) Disputed Paternity Presumption in Burkina Faso: Determination of the Biological Fathers of Children Using Abo-Rhesus/Hemoglobin Electrophoresis and STR Assays. Journal of Genetic Engineering and Biotechnology, 19, 130.
https://doi.org/10.1186/s43141-021-00221-3
[23]  Butler, J.M., Buel, E., Crivellente, F. and McCord, B.R. (2004) Forensic DNA Typing by Capillary Electrophoresis Using the ABI Prism 310 and 3100 Genetic Analyzers for STR Analysis. Electrophoresis, 25, 1397-1412.
https://doi.org/10.1002/elps.200305822
[24]  Lelo, E., Kinyua, J., Aluvaala, E., Kiarie, W. and Chege, C. (2021) Allele Frequencies for 20 Autosomal Microsatellite Loci in the Kenyan Population.
https://doi.org/10.21203/rs.3.rs-289605/v1
[25]  Doutremepuich, C. (2012) Les empreintes génétique en pratique judiciaire. Bulletin de lAcadémie Nationale de Médecine, 196, 1117-1130.
https://doi.org/10.1016/s0001-4079(19)31742-x
[26]  Apeke, K.S. (2018) Ubiquitous Modeling for Scales Interaction: Application for Tumor Response Prediction during Radiotherapy.
[27]  Modélisation ubiquiste pour l’interaction d’échelles: Application à la prédiction de la réponse d’une tumeur sous traitement en radiothérapie: Université de Bretagne occidentale—Brest; 2018.
[28]  El-Alfy, S.H. and Abd El-Hafez, A.F. (2012) Paternity Testing and Forensic DNA Typing by Multiplex STR Analysis Using ABI PRISM 310 Genetic Analyzer. Journal of Genetic Engineering and Biotechnology, 10, 101-112.
https://doi.org/10.1016/j.jgeb.2012.05.001
[29]  Yang, Y.L., Wang, J.G., Wang, D.X., Zhang, W.Y., Liu, X.J., Cao, J., et al. (2015) Analysis of an “Off-Ladder” Allele at the Penta D Short Tandem Repeat Locus. Genetics and Molecular Research, 14, 15096-15101.
https://doi.org/10.4238/2015.november.24.18
[30]  Fujii, K., Watahiki, H., Mita, Y., Iwashima, Y., Miyaguchi, H., Kitayama, T., et al. (2016) Next-Generation Sequencing Analysis of Off-Ladder Alleles Due to Migration Shift Caused by Sequence Variation at D12S391 Locus. Legal Medicine, 22, 62-67.
https://doi.org/10.1016/j.legalmed.2016.08.003
[31]  Ruitberg, C.M. (2001) STRBase: A Short Tandem Repeat DNA Database for the Human Identity Testing Community. Nucleic Acids Research, 29, 320-322.
https://doi.org/10.1093/nar/29.1.320
[32]  de Boer, H.H., Maat, G.J.R., Kadarmo, D.A., Widodo, P.T., Kloosterman, A.D. and Kal, A.J. (2018) DNA Identification of Human Remains in Disaster Victim Identification (DVI): An Efficient Sampling Method for Muscle, Bone, Bone Marrow and Teeth. Forensic Science International, 289, 253-259.
https://doi.org/10.1016/j.forsciint.2018.05.044

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133