全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Variations in Atmospheric Electromagnetism and Their Impacts on Mortality Rates in the Southern and Northeastern Regions of Brazil

DOI: 10.4236/acs.2025.151012, PP. 248-274

Keywords: Solar Activity, Cardiovascular Mortality, Geomagnetic Disturbances

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examines the relationship between geomagnetic indices and mortality rates from specific diseases in the Northeast (NE) and Southern (S) regions of Brazil from 1996 to 2020. Solar activity data, including the Ap and Sudden Ionospheric Disturbance (SID) indices, were sourced from the World Data Center, while mortality data were obtained from the Mortality Information System (SIM-DATASUS). Acute Myocardial Infarction (AMI) emerged as the leading cause of mortality, with average death rates of 60.4, 56.8, and 58.3 deaths per 100,000 inhabitants in Pernambuco (PE), Rio Grande do Sul (RS), and Paraná (PR), respectively. Temporal analysis revealed a consistent upward trend in AMI mortality across most states, except for Santa Catarina (SC). Seasonal patterns identified through Principal Component Analysis (PCA) demonstrated that geomagnetic and climatic indices influenced mortality differently across regions and seasons. The Ap geomagnetic index was strongly correlated with higher AMI mortality rates during summer, while the SID index showed greater relevance during winter. A dipole phenomenon was observed, with AMI deaths increasing alongside geomagnetic activity in the S region but showing an inverse relationship in the NE region. These findings highlight the significant influence of geomagnetic variations on public health, particularly cardiovascular mortality. The study underscores the need for further research into the biological mechanisms underlying these associations and recommends the development of early warning systems and targeted preventive measures to mitigate the potential health impacts of geomagnetic disturbances, especially for vulnerable populations.

References

[1]  Wertheimer, N. and Leeper, E. (1979) Electrical Wiring Configurations and Childhood Cancer. American Journal of Epidemiology, 109, 273-284.
https://doi.org/10.1093/oxfordjournals.aje.a112681
[2]  Marcilio, I., Habermann, M. and Gouveia, N. (2009) Campos magnéticos de frequência extremamente baixa e efeitos na saúde: Revisão da literatura. Revista Brasileira de Epidemiologia, 12, 105-123.
https://doi.org/10.1590/s1415-790x2009000200002
[3]  Mercola, J. (2020) EMF*D: 5G, Wi-Fi & Cell Phones: Hidden Harms and How to Protect Yourself. Hay House, Inc.
[4]  Stoupel, E. (2020) Cosmic Ray and Human Health. EC Pharmacology and Toxicology, 8, 167-176.
[5]  Palmer, S.J., Rycroft, M.J. and Cermack, M. (2006) Solar and Geomagnetic Activity, Extremely Low Frequency Magnetic and Electric Fields and Human Health at the Earth’s Surface. Surveys in Geophysics, 27, 557-595.
https://doi.org/10.1007/s10712-006-9010-7
[6]  Ziubryte, G., Jarusevicius, G., Landauskas, M., Ragulskis, M., McCraty, R. and Vainoras, A. (2021) Cardiovascular System Interactions with the Local Earth Magnetic Field Fluctuations: A Cohort Study.
https://doi.org/10.21203/rs.3.rs-250922/v1
[7]  Chai, Z., Wang, Y., Li, Y., Zhao, Z. and Chen, M. (2023) Correlations between Geomagnetic Field and Global Occurrence of Cardiovascular Diseases: Evidence from 204 Territories in Different Latitude. BMC Public Health, 23, Article No. 1771.
https://doi.org/10.1186/s12889-023-16698-1
[8]  Qu, J. and Wickramasinghe, N.C. (2020) The World Should Establish an Early Warning System for New Viral Infectious Diseases by Space-Weather Monitoring. MedComm, 1, 423-426.
https://doi.org/10.1002/mco2.20
[9]  Alabdulgader, A., McCraty, R., Atkinson, M., Dobyns, Y., Vainoras, A., Ragulskis, M., et al. (2018) Long-Term Study of Heart Rate Variability Responses to Changes in the Solar and Geomagnetic Environment. Scientific Reports, 8, Article No. 2663.
https://doi.org/10.1038/s41598-018-20932-x
[10]  Elhalel, G., Price, C., Fixler, D. and Shainberg, A. (2019) Cardioprotection from Stress Conditions by Weak Magnetic Fields in the Schumann Resonance Band. Scientific Reports, 9, Article No. 1645.
https://doi.org/10.1038/s41598-018-36341-z
[11]  Geronikolou, S., Leontitsis, A., Petropoulos, V., Davos, C., Cokkinos, D. and Chrousos, G. (2020) Cyclic Stroke Mortality Variations Follow Sunspot Patterns. F1000Research, 9, Article 1088.
https://doi.org/10.12688/f1000research.24794.2
[12]  McCraty, R., Atkinson, M., Tomasino, D. and Tiller, W.A. (2018) The Electricity of Touch: Detection and Measurement of Cardiac Energy Exchange between People. In: Brain and Values, Psychology Press, 359-379.
https://doi.org/10.4324/9780203763834-16
[13]  Stojan, G., Giammarino, F. and Petri, M. (2021) Systemic Lupus Erythematosus and Geomagnetic Disturbances: A Time Series Analysis. Environmental Health, 20, Article No. 28.
https://doi.org/10.1186/s12940-021-00692-4
[14]  Ivanovic-Zuvic, F., de La Vega, R., Ivanovic-Zuvic, N. and Correa, E. (2010) Enfermedades afectivas y actividad solar: Seguimiento a 16 años. Revista médica de Chile, 138, 694-700.
https://doi.org/10.4067/s0034-98872010000600005
[15]  Díaz-Sandoval, R., Erdélyi, R. and Maheswaran, R. (2011) Could Periodic Patterns in Human Mortality Be Sensitive to Solar Activity? Annales Geophysicae, 29, 1113-1120.
https://doi.org/10.5194/angeo-29-1113-2011
[16]  Mavromichalaki, H., Papailiou, M., Gerontidou, M., Dimitrova, S. and Kudela, K. (2021) Human Physiological Parameters Related to Solar and Geomagnetic Disturbances: Data from Different Geographic Regions. Atmosphere, 12, Article 1613.
https://doi.org/10.3390/atmos12121613
[17]  Watanabe, Y., Cornélissen, G., Halberg, F., Otsuka, K. and Ohkawa, S.-I. (2000) Associations by Signatures and Coherences between the Human Circulation and Helio and Geomagnetic Activity. Biomedicine & Pharmacotherapy, 55, s76-s83.
https://doi.org/10.1016/s0753-3322(01)90008-3
[18]  Zilli Vieira, C.L., Alvares, D., Blomberg, A., Schwartz, J., Coull, B., Huang, S., et al. (2019) Geomagnetic Disturbances Driven by Solar Activity Enhance Total and Cardiovascular Mortality Risk in 263 U.S. Cities. Environmental Health, 18, Article No. 83.
https://doi.org/10.1186/s12940-019-0516-0
[19]  Stoupel, E., Kalediene, R., Petrauskiene, J., Starkuviene, S., Abramson, E., Israelevich, P. and Sulkes, J. (2007) Monthly Deaths Number and Concomitant Environmental Physical Activity: 192 Months Observation (1990-2005). Sun Geosph, 2, 78-83.
[20]  Zilli Vieira, C.L., Alvares, D., Blomberg, A., Schwartz, J., Coull, B., Huang, S., et al. (2019) Geomagnetic Disturbances Driven by Solar Activity Enhance Total and Cardiovascular Mortality Risk in 263 U.S. Cities. Environmental Health, 18, Article 17062.
https://doi.org/10.1186/s12940-019-0516-0
[21]  Mendoza, B. and Sánchez de la Peña, S. (2010) Solar Activity and Human Health at Middle and Low Geomagnetic Latitudes in Central America. Advances in Space Research, 46, 449-459.
https://doi.org/10.1016/j.asr.2009.06.021
[22]  Dimitrova, S., Angelov, I. and Petrova, E. (2013) Solar and Geomagnetic Activity Effects on Heart Rate Variability. Natural Hazards, 69, 25-37.
https://doi.org/10.1007/s11069-013-0686-y
[23]  Mattoni, M., Ahn, S., Fröhlich, C. and Fröhlich, F. (2020) Exploring the Relationship between Geomagnetic Activity and Human Heart Rate Variability. European Journal of Applied Physiology, 120, 1371-1381.
https://doi.org/10.1007/s00421-020-04369-7
[24]  IBGE (2010) Conheça cidades e estados do Brasil, Rio de Janeiro: IBGE.
https://cidades.ibge.gov.br/
[25]  Peel, M.C., Finlayson, B.L. and McMahon, T.A. (2007) Updated World Map of the Köppen-Geiger Climate Classification. Hydrology and Earth System Sciences, 11, 1633-1644.
https://doi.org/10.5194/hess-11-1633-2007
[26]  Echer, E., Lucas, A.D., Hajra, R., Franco, A.M.D.S., Bolzan, M.J.A. and Nascimento, L.E.S.D. (2023) Geomagnetic Activity Following Interplanetary Shocks in Solar Cycles 23 and 24. Brazilian Journal of Physics, 53, Article No. 79.
https://doi.org/10.1007/s13538-023-01294-w
[27]  Brazilian Institute of Geography and Statistics (IBGE) (2020) Censo Demográfico 2020: Resultados Preliminares.
https://www.ibge.gov.br
[28]  Hathaway, D.H. (2010) The Solar Cycle. Living Reviews in Solar Physics, 7, Article No. 1.
https://doi.org/10.1007/lrsp-2010-1
[29]  Tapping, K.F. (2013) The 10.7 Cm Solar Radio Flux (f10.7). Space Weather, 11, 394-406.
https://doi.org/10.1002/swe.20064
[30]  Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P., Yashiro, S. and Michalek, G. (2015) The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24. The Astrophysical Journal, 804, L23.
https://doi.org/10.1088/2041-8205/804/1/l23
[31]  Royal Observatory of Belgium (2022) SILSO Data/Image, Brussels.
https://www.sidc.be/silso/datafiles
[32]  Balogh, A., Hudson, H.S., Petrovay, K. and von Steiger, R. (2014) Introduction to the Solar Activity Cycle: Overview of Causes and Consequences. Space Science Reviews, 186, 1-15.
https://doi.org/10.1007/s11214-014-0125-8
[33]  Pesnell, W.D. (2016) Predictions of Solar Cycle 24: How Are We Doing? Space Weather, 14, 10-21.
https://doi.org/10.1002/2015sw001304
[34]  Clilverd, M.A., Rodger, C.J., Dietrich, S., Raita, T., Ulich, T., Clarke, E., et al. (2010) High-Latitude Geomagnetically Induced Current Events Observed on Very Low Frequency Radio Wave Receiver Systems. Radio Science, 45, 1-11
https://doi.org/10.1029/2009rs004215
[35]  Davies, K. (1990) Ionospheric Radio. Peter Peregrinus Ltd.
[36]  Romeo, S., Zeni, O., Sannino, A., Lagorio, S., Biffoni, M. and Scarfì, M.R. (2021) Genotoxicity of Radiofrequency Electromagnetic Fields: Protocol for a Systematic Review of in Vitro Studies. Environment International, 148, Article 106386.
https://doi.org/10.1016/j.envint.2021.106386
[37]  Liu, L., Wan, W., Chen, Y. and Le, H. (2011) Solar Activity Effects of the Ionosphere: A Brief Review. Chinese Science Bulletin, 56, 1202-1211.
https://doi.org/10.1007/s11434-010-4226-9
[38]  Bodewein, L., Schmiedchen, K., Dechent, D., Stunder, D., Graefrath, D., Winter, L., et al. (2019) Systematic Review on the Biological Effects of Electric, Magnetic and Electromagnetic Fields in the Intermediate Frequency Range (300 Hz to 1 MHz). Environmental Research, 171, 247-259.
https://doi.org/10.1016/j.envres.2019.01.015
[39]  Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L. and Vaquero, J.M. (2015) Revision of the Sunspot Number(s). Space Weather, 13, 529-530.
https://doi.org/10.1002/2015sw001264
[40]  Valdés Abreu, J.C. (2023) Degradation of the Global Navigation Satellite System Positioning Accuracy Caused by Ionospheric Disturbance Sources. Universidad de Chile.
https://repositorio.uchile.cl/handle/2250/193060
[41]  Pandit, D., Ghimire, B., Amory-Mazaudier, C., Fleury, R., Chapagain, N.P. and Adhikari, B. (2021) Climatology of Ionosphere over Nepal Based on GPS Total Electron Content Data from 2008 to 2018. Annales Geophysicae, 39, 743-758.
https://doi.org/10.5194/angeo-39-743-2021
[42]  Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O. and Morschhauser, A. (2021) The Geomagnetic Kp Index and Derived Indices of Geomagnetic Activity. Space Weather, 19, e2020SW002641.
https://doi.org/10.1029/2020sw002641

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133